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Abstract
Objectives To investigate the diagnostic performance of diffu-
sion tensor imaging in patients with Parkinson’s disease (PD).
Methods We examined a total of 126 PD patients (68 males/
58 females, mean age: 62.0 ±7.6 years) and 91 healthy con-
trols (43 males/48 females, mean age: 59.8 ±7.2 years).
Images were acquired on a 3 Tesla magnetic resonance scan-
ner. The Camino software was used to normalize and

parcellate diffusion-weighted images into 90 cerebral regions
based on the automatic anatomical labelling template. The
minimum, median, and maximum values of the mean/radial/
axial diffusivity/fractional anisotropy were determined. The
diagnostic performance was assessed by receiver operating
characteristic analysis. The associations of imaging parame-
ters with disease severity were tested using Pearson’s correla-
tion coefficients after adjustment for disease duration.
Results Compared with healthy controls, PD patients showed
increased diffusivity in multiple cortical regions that extended be-
yond the basal ganglia. An area under curve of 85 % was identi-
fied for the maximum values of mean diffusivity in the ipsilateral
middle temporal gyrus. The most significant intergroup difference
was 26.8 % for the ipsilateral inferior parietal gyrus.
Conclusion The measurement of water diffusion from the
parcellated cortex may be clinically useful for the assessment
of PD patients.
Key Points
• Increased diffusivity was identified in multiple cortical re-
gions of Parkinson’s disease patients.

• The area under the receiver operating curve was 85% in the
middle temporal gyrus.

• The ipsilateral inferior parietal gyrus showed the most sig-
nificant change.
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Introduction

Parkinson’s disease (PD) − a progressive neurodegenerative
disorder which causes tremor at rest, bradykinesia, and postural
instability − results from the massive loss of dopaminergic neu-
rons in the substantia nigra pars compacta along with the
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occurrence of Lewy bodies [1, 2]. The diagnosis of PD remains
clinical. However, the accuracy of the clinical diagnosis re-
mains as low as 53 % when the disease duration is less than 5
years and the neuropathological criteria are used as the gold
standard [3]. Magnetic resonance imaging (MRI) examinations
are generally performed to rule out concomitant disorders rather
than for diagnostic confirmation. Although image-based volu-
metric measurements have been previously performed [4–6],
volumetric loss is not specific to PD and can be evident only
in advanced disease stages. Therefore, a non-invasive, ionizing
radiation-free diagnostic imaging biomarker of PD would be
highly desirable.

Diffusion tensor imaging (DTI) has been extensively utilized
to study neurodegenerative diseases [7–12]. Several metrics can
be derived from diffusion tensor imaging, including fractional
anisotropy (FA), as well as mean, radial, and axial diffusivity
(MD, RD, and AD, respectively). The use of DTI in patients
with PD has been chiefly limited to hypothesis-driven selection
of specific regions of interest (ROIs) in the basal ganglia [1, 2,
13] or focuses on white matter lesions. Villaincourt et al. [14]
have previously shown a reduced FA in the caudal part of the
substantia nigra in patients with PD, although a large overlap
with values observed in healthy subjects was evident [15, 16].
In contrast, a large prospective study failed to identify significant
differences in MD values between patients and controls [17].

The change of the measured diffusivity is frequently related
to a shift of water balance between different compartments.
Because water could be restricted or hindered by the organelle
or membrane, the measured water diffusivity could be in-
creased if the extracellular contribution is dominant, as a result
of potential cell death or shrinkage. Most ROI-based analyses
published to date focused on mean values of DTI. However,
recent studies in the field of oncology have reported more
pronounced changes from the minimum value rather than
the average [18, 19]. In this prospective study, we hypothe-
sized that the minimum, mean, and maximum MD values
could be altered in PD patients compared with healthy
subjects.

To obtain unbiased results with respect to the current path-
ophysiological model of PD, systematic DTI investigations of
different brain regions are required. Recent technical advances
in DTI have allowed spatial normalization of whole-brain im-
ages using reverse-affine transformation to maintain the qual-
ity of the principal diffusion direction [20, 21] through the use
of specific software applications (e.g., Camino) [22].
Furthermore, there is evidence suggesting that both glutamate
and glutamine levels are increased in the lentiform nucleus of
patients with early-stage PD [23]. These findings are in line
with the observation that >50 % of all dopaminergic neurons
in the nigrostriatal projection are lost before the onset of PD. If
disease severity and diffusion index are correlated with each
other, DTI can be useful to assess the response to therapeutic
interventions (especially in patients with early-stage disease).

In the current study, we sought to identify the cerebral
regions and the diffusion indexes with the best diagnostic
performance in PD patients. Subsequently, the percentage
change of diffusion between PD patients and healthy controls
was compared. Finally, we examined the correlations between
the diffusion index and the disease severity. The overall goal
was to investigate the regional changes of diffusion tensor
throughout the brains of PD patients.

Materials and methods

The study protocol followed the tenets of the Declaration of
Helsinki and was reviewed and approved by the local
Institutional ReviewBoard. All subjects provided their written
informed consent to participate after a detailed explanation of
the study.

Participants

This is a case-control study with a prospective design. A total
of 126 patients with PD (68 males, mean age: 62.0 ±7.6 years;
mean disease duration: 8.2 ±6.1 years) and 91 healthy control
subjects (43 males, mean age: 59.8 ±7.2 years) were enrolled.
All patients met the National Institute of Neurological
Disorders and Stroke diagnostic criteria [24] for probable
PD, the only exception being age at onset. To avoid the con-
founding effects of drugs, all of the anti-parkinsonian medica-
tions were withdrawn at least 12 h before assessing the sever-
ity of motor disability. We determined for each patient the
Schwab and England Activities of Daily Living (ADL: 80.3
±17.8) scale, the Unified Parkinson Disease Rating Scale
(UPDRS: 35.5 ±23.4, the motor subscale: 21.9 ±14.3), mod-
ified Hohen and Yahr (mHY: 2.3 ±1.2) staging, and Mini-
Mental State Examination (MMSE: 27.4 ±2.9). All controls
underwent a thorough review of medical history and a careful
physical examination, including a full neurological exam and
MMSE (29.1 ±1.1). Patients were excluded in presence of the
following criteria: 1) presence of brain abnormalities (includ-
ing hydrocephalus or encephalomalacia) that may impair cog-
nitive function on imaging studies (MRI and/or 18FDG-PET),
2) history of intracranial surgery (including thalamotomy, pal-
lidotomy, and/or deep brain stimulation), or 3) major physical
or neuropsychiatric disorders. Patients with mild cortical atro-
phy were deemed eligible.

Image acquisition

Images were acquired on a 3 Tesla (T) MRI scanner
(MAGNETOM Trio, Siemens, Erlangen, Germany) using a
12-channel head matrix coil. The patient’s head was held still
by a fixation pad during the scanning session in order to re-
duce bulk motion. Conventional imaging (i.e., T2-weighted
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turbo spin-echo, T2-weighted FLAIR, and T1-weighted MP-
RAGE sequences) was performed to rule out concomitant
neurological disorders (e.g., stroke, moderate-to-severe de-
mentia and severe dyskinesia). The imaging parameters for
T1-weighted images were as follows: repetition time (TR)/
echo time (TE)/inversion time (TI)/flip angle = 2000 ms/
2.63 ms/900 ms/9°, slice thickness = 1 mm, number of slices
= 160, matrix size = 224 × 256, and field of view (FOV) = 224
× 256mm. The acquisition timewas 4min 08 sec. DTI images
were acquired using an spin-echo echo planar imaging se-
quence with the following parameters: TR/TE/slice thickness
= 5700 ms/108 ms/3 mm, matrix size = 96 × 96, and FOV =
192 × 192 mm. Parallel imaging was used, with an accelera-
tion factor of two and generalized autocalibrating partially
parallel acquisition (GRAPPA) reconstruction. Thirty slices
were acquired covering the entire brain with a b-value of
1000 s/mm2. Diffusion-weighting gradients were applied in
30 non-collinear directions. An additional non-diffusion-
weighted image was also acquired.

Image post-processing

A voxel-based morphometry analysis was performed using
high-resolution T1-weighted MP-RAGE images according
to the standard procedure [25]. We then performed whole-
brain parcellation with the Camino software (http://cmic.cs.
ucl.ac.uk/camino/) [26] using the recommended procedures
and parameters. Individual FA values were normalized to the
standard ICBM-152 template from the International
Consortium for Brain Mapping. The brain was subsequently
parcellated into 116 areas as specified in the AAL template.
The normalization parameters were subsequently applied to
the MD map. A parenchyma mask was created by segmenta-
tion on the non-diffusion-weighted image, which was subse-
quently applied on all the maps of diffusion index [with the
goal of reducing the impact of cerebrospinal fluid (CSF)]. We
then calculated the 10th (minimum), 50th (median), and 90th
(maximum) percentiles of diffusion index for each parcellated
brain region. After the exclusion of 26 cerebellar regions, a
total of 90 cerebral regions were included in the final analysis.
The extracted values from the ROIs were then reorganized in
each patient taking into account the laterality of disease onset.

Statistical analysis

The sensitivity, specificity, and optimal cut-off points of the
diffusion tensor for differentiating patients with PD from con-
trols were calculated using receiver operating characteristic
(ROC) analyses. The area under the ROC curve (AUC) pro-
vides a measure of the overall discriminative ability of a var-
iable for each region of interest. The differences in diffusion
index were compared using the Student’s t test. When statis-
tically significant differences were detected, we calculated the

percentage changes between average values of PD patients
and healthy controls. Disease severity was expressed with
the following parameters: disease duration, ADL, total and
motor subscale of UPDRS, and MMSE. The associations be-
tween disease severity and the diffusion tensor index were
investigated using Pearson’s correlation coefficients after ad-
justment for disease duration. All calculations were performed
using the SPSS software package, version 18.0 (SPPS Inc.,
Chicago, IL, USA). Two-tailed P values < 0.000138 (after
correction for multiple comparisons) were considered statisti-
cally significant.

Results

Figure 1 shows two axial images of MD — located in the
middle temporal lobe (A) and inferior parietal lobe (B) —
from one representative patient. The images were overlapped
with the corresponding AAL template (C and D, respectively).

Diagnostic performance of diffusion tensor

Table 1 reports the minimum, median, and maximum values
of diffusion index for different brain areas of PD patients and
healthy controls. Both the maximum and median values of
MD were significantly higher in patients with PD than in
controls (both in separate lobes and the entire brain). We sub-
sequently investigated the area under curve, sensitivity, spec-
ificity, and optimal cut-off values of the diffusion index for the
entire cohort (Table 2). Figure 2 shows the ROC curves for the
minimum, median, and maximum values of MD/FA for each
parcellated brain region that showed a significant difference
between PD patients and controls. The results of ROC analy-
sis from AD and RD are shown in Fig. 3. In the entire cohort,
the highest AUC was observed for the maximum MD in the
ipsilateral middle temporal lobe (AUC = 85.0 %; optimal cut-
off = 0.912 × 10-3 mm2/sec). In FA, the largest AUC was 77.0
% in the cuneus when the maximum value was used. In con-
trast, the AUC for the basal ganglia varied from 50% (median
AD in the ipsilateral globus pallidus) to 73.7% (median AD in
the contralateral caudate).

Comparison of changes of in patients with Parkinson’s
disease and healthy controls

Regardless of disease severity, the inferior parietal gyrus
was the region showing the more pronounced differences
in the maximum values of diffusivity (changes in MD:
26.8 %; AD: 15.0 %; RD: 26.6 %, respectively). In con-
trast, the most significant change in FA was identified in
the posterior cingulum (22.6 % in the median value of
FA). Figure 4 plots the percentage changes of DTI in the
cortical regions of PD patients that showed significant
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differences. The changes in the maximum values were
more pronounced than those observed for median values.
A lower number of regions with significant changes were
detected when using minimum values. The median
values of MD indicated that most of the ipsilateral oc-
cipital and parietal regions were affected, although the
frontal regions were relatively spared.

Correlation of DTI with disease severity

After adjustment for disease duration, we found a sta-
tistically significant association between ADL and max-
imum MD/RD in the ipsilateral posterior cingulum
(correlation coefficients = -0.421/-0.431). In the ipsilat-
eral precuneus, we identified a significant association

between ADL scores and median RD (correlation coef-
ficient = -0.433). No significant associations were evi-
dent between the diffusion index and other clinical
scores.

Effect of cerebral atrophy

In order to examine the extent of cerebral atrophy in the study
patients, voxel-based morphometry was performed (Fig. 5).
Only sparse changes at the frontal, parietal, and occipital re-
gions were evident. However, more substantial changes
were noted at caudate nucleus, midbrain (peri-aqueduct
region), and peribasal cistern (anterior medial temporal
lobe, amygdala) regions.

Fig. 1 Mean diffusivity from one
representative patient. Two axial
images of MD — located in the
middle temporal lobe (A) and
inferior parietal lobe (B) — from
one representative patient are
presented. The images were
overlapped with the
corresponding AAL template
(C and D, respectively)
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Table 1 Mean diffusivity values of the study participants

MD FA AD RD

Controls PD Controls PD Controls PD Controls PD

Whole brain Max 1.100 (0.290) 1.123 (0.265) 0.518 (0.109) 0.516 (0.110) 1.456 (0.247) 1.496 (0.233) 0.991 (0.282) 1.013 (0.256)

Med 0.743 (0.066) 0.758 (0.073) 0.277 (0.065) 0.275 (0.066) 1.102 (0.081) 1.128 (0.092) 0.631 (0.077) 0.645 (0.084)

Min 0.524 (0.083) 0.526 (0.084) 0.142 (0.034) 0.141 (0.034) 0.882 (0.066) 0.894 (0.070) 0.743 (0.066) 0.758 (0.073)

Frontal Max 1.163 (0.287) 1.174 (0.253) 0.493 (0.075) 0.489 (0.076) 1.501 (0.226) 1.540 (0.204) 1.052 (0.275) 1.062 (0.237)

Med 0.752 (0.046) 0.766 (0.053) 0.265 (0.036) 0.262 (0.036) 1.119 (0.050) 1.143 (0.063) 0.643 (0.051) 0.656 (0.057)

Min 0.535 (0.060) 0.537 (0.061) 0.136 (0.019) 0.135 (0.020) 0.896 (0.051) 0.905 (0.056) 0.752 (0.046) 0.766 (0.053)

Parietal Max 1.223 (0.326) 1.253 (0.313) 0.499 (0.061) 0.499 (0.065) 1.603 (0.268) 1.660 (0.269) 1.120 (0.310) 1.149 (0.295)

Med 0.774 (0.056) 0.792 (0.066) 0.248 (0.033) 0.247 (0.034) 1.065 (0.067) 1.201 (0.085) 0.666 (0.064) 0.682 (0.073)

Min 0.551 (0.054) 0.550 (0.060) 0.120 (0.015) 0.119 (0.015) 0.924 (0.042) 0.940 (0.046) 0.774 (0.056) 0.792 (0.066)

Occipital Max 1.061 (0.156) 1.105 (0.165) 0.466 (0.067) 0.470 (0.068) 1.425 (0.112) 1.478 (0.134) 0.971 (0.142) 1.014 (0.149)

Med 0.767 (0.036) 0.781 (0.042) 0.236 (0.031) 0.237 (0.034) 1.113 (0.044) 1.141 (0.055) 0.665 (0.045) 0.677 (0.051)

Min 0.582 (0.040) 0.579 (0.046) 0.118 (0.012) 0.116 (0.013) 0.899 (0.033) 0.911 (0.038) 0.767 (0.036) 0.781 (0.042)

Temporal Max 1.076 (0.251) 1.112 (0.231) 0.502 (0.075) 0.496 (0.076) 1.379 (0.193) 1.416 (0.168) 0.962 (0.241) 0.997 (0.220)

Med 0.743 (0.048) 0.760 (0.056) 0.271 (0.040) 0.267 (0.040) 1.069 (0.052) 1.093 (0.062) 0.637 (0.053) 0.654 (0.060)

Min 0.511 (0.060) 0.518 (0.063) 0.146 (0.023) 0.143 (0.022) 0.854 (0.044) 0.863 (0.051) 0.743 (0.048) 0.760 (0.056)

Other Max 0.955 (0.302) 0.966 (0.251) 0.625 (0.157) 0.621 (0.159) 1.371 (0.301) 1.392 (0.264) 0.835 (0.300) 0.846 (0.249)

Med 0.686 (0.091) 0.701 (0.100) 0.351 (0.093) 0.349 (0.095) 1.054 (0.118) 1.076 (0.128) 0.554 (0.104) 0.567 (0.112)

Min 0.458 (0.120) 0.465 (0.124) 0.182 (0.046) 0.180 (0.045) 0.845 (0.097) 0.858 (0.102) 0.686 (0.091) 0.701 (0.100)

Diffusivity is expressed in 10-3 mm2 /sec. Average values are reported for the entire brain and different lobes. Data are reported as means (standard
deviations). MD mean diffusivity, FA fractional anisotropy, RD radial diffusivity, AD axial diffusivity, PD Parkinson’s disease. Max maximum, Med
median, Min minimum

Table 2 Results of receiver
operating characteristic (ROC)
analysis of mean diffusivity
values

Regions Area under
curve

Optimal cut-off
value

Sensitivity Specificity

MD

Minimum Ipsi_ParaHippocampal 0.681 0.494 0.643 0.692

Median Cont_Calcarine 0.799 0.766 0.754 0.758

Maximum Ipsi_Temporal_Mid 0.850 0.912 0.706 0.857

FA

Minimum Ipsi_Cingulum_Post 0.673 0.187 0.349 0.967

Median Ipsi_Calcarine 0.743 0.220 0.619 0.846

Maximum Ipsi_Cuneus 0.770 0.465 0.579 0.846

AD

Minimum Ipsi_Calcarine 0.787 0.910 0.579 0.890

Median Ipsi_Angular 0.790 1.140 0.786 0.714

Maximum Ipsi_Angular 0.827 1.445 0.690 0.824

RD

Minimum Ipsi_ParaHippocampal 0.690 0.365 0.603 0.758

Median Cont_Calcarine 0.777 0.652 0.595 0.868

Maximum Ipsi_Temporal_Mid 0.843 0.817 0.754 0.802

The results of ROC analysis are expressed using the area under the ROC curve, the optimal cut-off points, and the
corresponding sensitivity and specificity values. The diffusivity values are expressed in 10-3 mm2 /sec. (MDmean
diffusivity, FA fractional anisotropy, AD axial diffusivity, RD radial diffusivity)
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Discussion

There are two principal findings in this study. First, MD was
significantly higher in PD patients than in controls. Notably,
such differences extended beyond the basal ganglia. The ipsi-
lateral inferior parietal gyrus was the site showing the most
significant change in MD. Secondly, we identified a distinct
spatial pattern of diffusion change in terms of the affected
cortical regions. The automatic parcellation procedure does
not require the manual definition of the region of interest,
which is subjective and tedious.

Conventional anatomical MRI typically yields negative
findings in terms of volume measurement in patients with
PD [27]. In this regard, no significant volumetric differences
in total brain, caudate, or substantia nigra were detected, the
only exception being a reduced pallidal volume in patients
with advanced disease [28]. Taken together, these results sug-
gest that volumetry cannot serve as a diagnostic tool.
Although the diagnosis of PD continues to be based on clin-
ical manifestations, MRI is frequently prescribed in patients
with suspected PD to rule out the presence of concomitant
neurological diseases. Nuclear medicine examinations (e.g.,
Trodat imaging) may also be used to increase the diagnostic

confidence. Based on the increased AUC, DTI may potential-
ly be useful for diagnostic purposes. We speculate that the use
of this imaging modality may be cost-effective and reduce the
time and expenses related to repeated clinical examinations.

Largest AUC and DTI-related changes

Diffusivity was significantly higher in PD patients than in
controls. Notably, we also demonstrated a specific cortical
involvement which extended beyond basal ganglia and might
involve the visual area. Although basal ganglia are the regions
that play the major role in the pathophysiology of PD, here we
have shown that DTI values in these regions have a limited
AUC. The maximum values of water diffusivity had a higher
diagnostic accuracy than traditionally used mean values. The
regions with the highest AUC were different among different
diffusion indices, including calcarine, cuneus, angular,
parahippocampus, and posterior cingulum. The best AUC
can be as high as 85.0 % (the maximum MD of the ipsilateral
middle temporal lobe). When compared with normal controls,
the maximum values of MD, AD, and RD concordantly iden-
tified the ipsilateral inferior parietal gyrus as the region with
the most significant change. Both the maximum values ofMD

Fig. 2 Receiver operating characteristic analysis of mean diffusivity and
fractional anisotropy. The figure depicts the receiver operating
characteristic curves for mean diffusivity (top) and fractional anisotropy

(bottom). A, D: minimum; B, E: median; C, F: maximum, respectively.
Curves from the striatum or showing the largest area are highlighted in
bold. The labelling for the rest of the curves was in supplementary Figure 1
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and RD from the ipsilateral posterior cingulum showed a sig-
nificant correlation with ADL.

The impairment of these regions in PD may reflect the
loss of dopaminergic inputs from the midbrain. The dys-
function in the inferior parietal lobule and middle tem-
poral lobes has been linked to memory [29, 30] or motor
[31, 32] deficits in PD patients. A metabolic impairment
of the cingulate cortex has been also reported in PD [16].
Interestingly, the observed increased MD in the middle
temporal gyrus and inferior parietal lobe might be in
broad agreement with the Braak’s pathological staging.
In patients with advanced PD, an involvement of the
anteromedial temporal mesocortex (that receives afferents
from the sensory association areas of the parietal, occip-
ital, and temporal neocortices) is common [33]. We, thus,
believe that our observations may be useful for under-
standing the neuroanatomical basis of memory or cogni-
tive dysfunction in late-stage PD and dopamine agonist-
induced impulse control disorders. Our data suggest that
structural alterations in the cortical brain (detected by
DTI) may have a key role in the aetiology of PD.

Additional DTI metrics and the use of the maximum
values

Although no significant directional preference exists for water
diffusion within gray matter, the values of FA, AD, and RD
identified in the current study had a potential diagnostic capac-
ity. Fractional anisotropy was found to be increased in some
cortical areas and decreased in other regions. Such discrepan-
cies may explain, at least in part, the inconsistencies previously
reported in DTI studies focusing on PD patients. Unfortunately,
a universally accepted model for quantifying DTI changes at
the gray matter level is still lacking. We believe that our data
may serve for future reference and can prompt further studies
on PD with the advance of diffusion MRI [34, 35].

The maximum values of MD had a higher AUC than tra-
ditionally used mean values. Controversy still exists regarding
the potential changes of MD measured in the basal ganglia of
patients with PD [13]. Notably, noise distribution intrinsic to
DTI measurements and the use of a parcellation method may
result in either overestimation or underestimation of MD. To
circumvent this issue, we performed all analyses separately for

Fig. 3 Receiver operating characteristic analysis of axial and radial
diffusivities. The figure depicts the receiver operating characteristic
curves for axial (top) and radial diffusivity. A, D: minimum; B, E:

median; C, F: maximum, respectively. Curves from the striatum or
showing the largest area are highlighted in bold The labelling for the
rest of the curves was in supplementary Figure 2
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Fig. 4 Changes of diffusion index from the parcellated brain regions.
The figure displays the percentage change of diffusion tensor for
parcellated brain regions characterized by the presence of statistically

significant differences between PD patients and healthy controls (in the
frontal, occipital, parietal, temporal and additional areas, respectively)
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the 10th (minimum), 50th (median), and 90th (maximum)
percentiles of MD. The results indicated that maximum MD

allowed identifying a higher number of affected brain areas
compared with median and minimum values. Consequently,

Fig. 5 Voxel-based morphometry. The figure shows the results of voxel-based morphometry. Compared with healthy controls, the atrophy identified in
patients is highlighted in colour and overlapped with high-resolution T1 images. Only sparse changes in the cortical regions were evident

3986 Eur Radiol (2016) 26:3978–3988



the use of maximumMD should be strongly recommended in
future DTI studies focusing on PD.

The interpretation of DTI changes

The measured apparent diffusion coefficient can result
from both intra- and extra-cellular contributions.
Because the diffusivity from the extracellular water is
larger, the increase in apparent diffusion is frequently
related to an increased extracellular space. In general,
an increased extracellular diffusion can reflect an in-
creased cell membrane permeability (e.g., as a result of
cell death). An increased MD is frequently attributed to a
loss of water balance in the microstructural environment,
possibly related to cellular degeneration, demyelination,
or axonal loss [36]. Therefore, the measured maximum
MD might reflect a significant contribution from the ex-
tracellular space (and chiefly from the CSF). In this sce-
nario, it is conceivable that the maximum MD may be
superior to traditional median MD data for detecting
pathological brain changes. Notably, MD was not invari-
ably increased in all of our PD patients. In this regard,
the use of minimum MD did not allow identifying brain
regions with significant differences.

Patients with early-stage PD typically have unilateral
symptoms. In the current study, regions characterized by
significant increase of MD could be either unilateral or
bilateral. The regions showing the highest AUC (ipsilat-
eral middle temporal gyrus) and the most significant
signal change (ipsilateral inferior parietal gyrus) were
both ipsilateral. Such ipsilateral increases of MD are
consistent with a previous MR spectroscopy study [37]
and have been attributed to unilateral neuronal dysfunc-
tion. Further investigations are needed to shed more
light on this issue.

Effect of cerebrospinal fluid

In PD, cerebral atrophy has been reported in various areas [29,
38, 39]. In the presence of cerebral atrophy, CSF contamina-
tion might result in an increased MD. Furthermore, a 2 × 2 ×
3-mm3 resolution for the diffusionmeasurement is poor, albeit
being commonly used in DTI studies of the human brain.
These factors may potentially result in deteriorated partial vol-
ume effects on gray matter. In order to reduce the potential
confounding impact of CSF, images were segmented during
the post-processing phase and only segmented gray matter
was used for the analysis. Notably, only sparse changes at
the frontal, parietal, and occipital regions were noted, exerting
only minimal or no contribution to diffusion index alterations
in such areas. Because we cannot completely rule out the
potential confounding effect of CSF, caution should be
exercised in the interpretation of our findings.

Study limitations and future directions

DTI is commonly used for imaging the white matter. In
this regard, the modelling of the axial and radial diffu-
sivities along and across the neuron fibre tracts used in
this study may be problematic because no such struc-
tures exist in the gray matter. Moreover, changes in the
two indices for regions characterized by a low direction-
ality are difficult to interpret (29). The involvement of
the frontal and temporal lobes observed herein suggests
the involvement of these regions in the alterations of
executive functions, emotions, language, and memory
frequently observed in patients with severe PD [40].
Our findings may prompt further investigations of quan-
titative DTI-derived biomarkers in PD patients, poten-
tially accelerating their clinical adoption in this common
neurodegenerative disorder. Further DTI studies are also
required to investigate the associations of the potentially
impaired cognitive functions and dementia in patients
with PD.

Conclusions

Diffusion tensor imaging detected significant changes in the
parcellated cerebral regions of patients with PD and has an
AUC as high as 85.0 % from the middle temporal lobe. Our
pilot results suggest the potential diagnostic utility of measur-
ing the maximum value of MD in PD patients, with a satis-
factory diagnostic sensitivity and specificity.
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