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ABSTRACT
Background: Ultra-deep targeted sequencing (UDT-Seq) has advanced our 

knowledge on the incidence and functional significance of somatic mutations. 
However, the utility of UDT-Seq in detecting copy number alterations (CNAs) remains 
unclear. With the goal of improving molecular prognostication and identifying new 
therapeutic targets, we designed this study to assess whether UDT-Seq may be useful 
for detecting CNA in oral cavity squamous cell carcinoma (OSCC).

Methods: We sequenced a panel of clinically actionable cancer mutations in 310 
formalin-fixed paraffin-embedded OSCC specimens. A linear model was developed 
to overcome uneven coverage across target regions and multiple samples. The 
5-year rates of secondary primary tumors, local recurrence, neck recurrence, 
distant metastases, and survival served as the outcome measures. We confirmed 
the prognostic significance of the CNA signatures in an independent sample of 105 
primary OSCC specimens. 

Results: The CNA burden across 10 targeted genes was found to predict prognosis 
in two independent cohorts. FGFR1 and PIK3CA amplifications were associated 
with prognosis independent of clinical risk factors. Genes exhibiting CNA were 
clustered in the proteoglycan metabolism, the FOXO signaling, and the PI3K-AKT 
signaling pathways, for which targeted drugs are already available or currently under 
development.

Conclusions: UDT-Seq is clinically useful to identify CNA, which significantly 
improve the prognostic information provided by traditional clinicopathological risk 
factors in OSCC patients.
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INTRODUCTION

Oral cavity squamous cell carcinoma (OSCC) is a 
leading cause of morbidity and mortality. OSCC is one 
of the 10 most common cancers worldwide, with most 
cases being observed in Asia (mainly because of betel 
quid chewing) [1]. The survival rates of OSCC remain 
suboptimal, largely because of delays in diagnosis 
leading to advanced disease. Risky oral habits for OSCC, 
including cigarette smoking, alcohol consumption, and 
betel quid chewing, can cause cumulative genetic changes, 
genomic aberrations, and widespread genomic instability 
[2]. Therefore, emerging OSCC genomic data hold great 
promise for predicting prognosis and providing a basis for 
the development of targeted therapies [3].

Somatic copy number alterations (CNAs) are 
widespread in cancer genomes and may lead to oncogene 
activation and/or tumor suppressor gene inactivation 
in several malignancies [4]. In addition to the common 
mutations in TP53, NOTCH1, CASP8, FAT1, CDKN2A, 
HRAS, and USP9X [2, 5, 6], OSCC also develops 
through the accumulation of multiple CNA events [5, 
7-9]. Amplifications in 3q, 5p, 7p, 8q, 11q, and 20q and 
deletions in 3p, 8p, 9p, and 18q have been observed in 
most OSCC studies. In general, these CNAs can either 
result in altered gene dosage or disrupt intragenetic 
regions. Although previous studies have shown that 
CNAs can predict prognosis in solid malignancies [5, 
8, 10-12], the clinical significance of CNAs in OSCC 
remains unclear and requires thorough investigation in 
large clinical cohorts [9]. In this scenario, determining 
how CNA contributes to clinical outcomes in patients with 
OSCC is a critical question and technical improvements in 
genomic methods are crucial to answering it.

The recent availability of ultra-deep targeted 
sequencing (UDT-Seq) has allowed increasing the depth 
of sequence coverage to greater than 2000×. Crucially, the 
ultra-deep coverage allows the highly sensitive detection 
of DNA sequence changes, even in small subclones. Most 
of the genes included in commercially available UDT-Seq 
panels are clinically actionable genes that are frequently 
mutated in numerous cancer types. Moreover, such genetic 
changes are clinically actionable by currently available 
drugs or new molecules under clinical development. 
This would ultimately facilitate the clinical translation of 
genetic data from bench to bedside. The sooner genetic 
alterations are identified, the sooner patients can be 
transferred into a clinical setting for treatment selection. 
Because of the low cost and high sensitivity of UDT-
Seq, this therapeutically targetable cancer gene panel 
is increasingly being used in clinical laboratories for 
treatment selection [13, 14]. Certain clinically actionable 
genes contain single nucleotide variants (SNVs), whereas 
others contain CNAs (e.g., EGFR and BRAF) [6, 15]. 
However, beyond use in identifying SNVs, the potential 
usefulness of UDT-Seq for detecting CNA remains 

unclear. How to reliably detect CNAs by using UDT-
Seq data remains open to discussion. In this study, we 
prioritized identifying CNAs in the actionable genes 
targeted by UDT-Seq. The purpose of this study was to 
expand the use of UDT-Seq from SNV detection to CNV 
discovery, and examine the feasibility of UDT-Seq for 
molecular prognostication and identification of potential 
therapeutic targets in OSCC.

Currently, computational methods of CNA analysis 
have been developed for whole exome sequencing 
(WES). However, various methods require paired control 
samples [16, 17] and are applicable with small sample 
sizes only [16, 18, 19]. Thus, these established methods 
cannot be applied to large samples (like vast collections 
of tumor specimens), especially in the absence of 
paired controls. In addition, when control sample size 
is much smaller than tumor sample size, the PCA/SVD 
normalization algorithms tend to falsely exclude copy 
number variations between tumor and normal samples; 
instead, such methodology captures the internal variation 
structure of copy number data among the predominant 
tumor group [20, 21]. PCA projections are influenced by 
uneven sample group size [22]. Because the UDT-Seq-
targeted regions covered in this study are much sparser 
and smaller than those covered by WES, the small number 
of targeted regions is insufficient to reliably estimate 
parameters in hidden Markov model-based inference 
[23]. Other currently available CNA tools display optimal 
performances only for the detection of rare CNA (i.e., 
those with a frequency of <1% in the patient population) 
[18, 20, 23, 24]. The recently published ONCOCNV 
considers normalization with multiple factors [25]. 
However, the ONCOCNV tool only allows analyzing 
multiple amplicons per gene, making CNA assessment 
inappropriate for mutation hotspots containing a single 
amplicon.

To circumvent these issues, we developed a linear 
model that overcomes the uneven coverage across target 
regions with a set of normal controls and can correct 
systematic biases among multiple samples. Herein, 
310 formalin-fixed paraffin-embedded (FFPE) tissue 
specimens from OSCC resections were analyzed for 
CNA by using UDT-Seq. Because genetic variants may 
explain the variable clinical trajectories of OSCC patients 
who share similar traditional risk factors, molecular 
stratification and targeted therapies are urgently needed. In 
this article, we extend the conventional utility of UDT-Seq 
in SNV detection and demonstrate that high-depth UDT-
Seq is also clinically useful for identifying CNA. The use 
of this low-cost, scalable strategy allows the analysis of 
numerous samples, ensuring adequate statistical power for 
the detection of significant relationships between CNA and 
clinical outcomes. The CNAs identified as significantly 
associated with prognosis were independently confirmed 
in a validation set comprising 105 additional primary 
OSCC samples. 
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RESULTS

Sample characteristics

This study comprised 310 patients with stage III 
or IV OSCC, most of whom (approximately 95%) were 
male. Risky oral habits were reported by 94% of the 
participants. Specifically, 82% of the participants were 
betel quid chewers. All the participants received follow-
up examinations for at least 36 months. During the follow-
up period, 193 patients (62.26%) died and 57 (18.39%) 
developed second primary tumors. Tumor relapse were 
observed in 53.23% of the samples, including local 
recurrence (21.93%), neck recurrence (27.1%), and distant 
metastases (26.77%). 

Initial UDT-Seq reads were mapped against the 
hg19 human reference genome by using the built-in 
software of the sequencer. The mean sequence coverage 
was 2443-fold, with 95% of the samples covered at > 
1500-fold. This coverage was markedly higher than that 
of general targeted sequencing. The degree of coverage 
uniformity for each region was also sufficiently high. The 
mean coefficient of variance for all of the targeted regions 
was 0.02. Because of the ultra-deep sequence coverage, 
the differential CNA signals between tumor and normal 
samples are more apparent and can more reliably be 
detected. The profile of read depth across the amplicons 
was highly reproducible among the controls (average 
pairwise correlation = 0.941). As shown in a previous 
study [26], the difference in normalized read depth of 
an amplicon between tumor and reference samples is 

correlated to the extent of chromosomal copy number 
changes.

Detection of copy number alteration

CNA were determined using the linear model 
described in the Methods section with a γ of 1.5. All of 
the examined regions were classified into one of three 
categories: amplification, deletion, or normal. Most of 
the targeted regions were found to exhibit CNA in the 
OSCC samples. However, approximately 50% of the 
identified CNAs were present in less than 20% of the 
samples. Specifically, among the 46 targeted genes, 26 
genes exhibited CNA with a frequency exceeding 20%. 
Figures 1 and 2 depict the frequency of copy number 
amplifications and deletions, respectively. The figures are 
sorted according to the total number of samples classified 
as harboring CNAs in the targeted genes. Common 
amplifications shared by at least 30% of the patients 
were identified in only 13 genes. Similarly, common 
deletions occurring in at least 30% of the patients were 
observed in only 12 genes. According to the number of 
SNVs reported by the Torrent Variant Caller, we noticed 
that OSCC samples were characterized by more CNAs 
than SNVs (Supplementary Table S5). Furthermore, the 
samples characterized by a higher number of CNAs tended 
to have a lower number of nonsynonymous SNVs (Figure 
3). For each sample, we calculated the SNV occurrence 
rate as the fraction of the targeted genes harboring SNVs 
in a particular sample. The CNA occurrence rate was 
also calculated for an individual sample as the fraction 
of the targeted genes exhibiting copy number changes. 

Figure 1: Frequency of copy number amplifications in different genes. Each bar indicates the number of samples with copy 
number amplifications of each gene. The x-axis is sorted using the total frequency of CNA events. 
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The highest CNA occurrence rate was observed in 
samples with a SNV occurrence rate of less than 0.06. By 
contrast, samples with a SNV occurrence rate exceeding 
0.1 generally exhibited a CNA rate of less than 0.3. Only 
6% of all mutational events were characterized by the 
presence of CNA and SNV in the same gene. All of the 
remaining mutations were either isolated CNA or SNV. 
Therefore, for each target region, the samples harboring 
CNAs were generally distinct from those carrying SNVs. 
Such different mutational spectra indicate the existence 
of different patterns of genetic aberrations in OSCC 
pathogenesis. 

Validation of copy number alterations

In an effort to validate our CNA calling method, 
we first assessed the consistency of CNA calls between 
amplicons covering the same gene. Because CNA size 
may range from 1 kilobase to several megabases, the two 
breakpoints of any given CNA segment can fall into an 
intergenic or intragenic region. When one breakpoint 
falls into a coding region, the whole CNA segment would 
encompass some entire genes and one incomplete gene 
region. Therefore, a CNA event occurring only in a part of 
a gene may be observed in this study because of the highly 

discrete nature of amplicon sequencing in UDT-Seq. 
Considering this, we therefore assessed the consistency 
of CNA calls between amplicons within a gene using a 
consistency score. Such score reflects the fraction of 
copy number-altered amplicons harboring the same 
amplification/deletion status of the neighboring amplicons 
within the same gene. The average consistency score 
among all multi-amplicon genes in all samples was 0.92. 
More specifically, on average, 92% of all copy number-
altered amplicons in a gene were mutually adjacent and 
exhibited consistent CNA calls.

Second, to evaluate the accuracy of the CNA calling 
method, we compared the CNA events of the 54 samples 
for which high-density SNP array profiles were available 
(Gene Expression Omnibus database accession number: 
GSE25103). Consequently, the proposed method yielded 
favorable average accuracy of 88% when we used the 
CNA results of the SNP array as a standard reference. 
Because most of the CNA events detected using UDT-
Seq were confirmed by the SNP array, we believe that our 
sequencing approach yielded robust data.

To further validate our UDT-Seq approach for CNA 
assessment, we utilized a replication panel comprising 105 
OSCC specimens. In this cohort, 91% of subjects had risky 
oral habits and 81% were betel quid chewers. We found 

Table 1: Validated associations between copy number amplifications and clinical outcomes.

Clinical outcome CNA-harboring gene Hazard ratio P value

Local recurrence PIK3CA 2.332341 0.006

Distant metastases FGFR1 3.043851 0.001

Distant metastases SMO 8.034381 0.003

Distant metastases RB1 9.043599 0.002

Distant metastases RET 13.32504 0.011

Disease-free survival PIK3CA 1.987948 0.0008

Disease-free survival ATM 14.10226 0.009

Disease-free survival STK11 31.09854 0.0009

Disease-free survival RET 14.37666 0.009

Disease-specific survival PIK3CA 1.945889 0.002

Disease-specific survival ATM 12.80487 0.012

Disease-specific survival STK11 31.24429 0.0009

Overall survival PIK3CA 1.69732 0.007

Overall survival ATM 11.89914 0.015

Overall survival CDH1 3.323677 0.008

Overall survival STK11 27.2731 0.001
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that 80.71% of the CNA identified in the first cohort were 
consistently present in the replication sample, supporting 
the robustness of our approach. Notably, the frequency 
of common CNA (identified in more than 30% of the 
samples) was similar in the discovery and replication 
cohorts. Consistently common CNA amplifications were 
observed for the following genes: MET, ABL1, NRAS, 
FGFR2, FGFR3, CSF1R, VHL, and RET, whereas 
common CNA deletions involved SMAD4, ATM, PTEN, 
ERBB4, RB1, APC, FBXW7, and TP53. 

Association between CNA and clinical outcomes

Patients were divided into three subgroups according 
to their CNA status (e.g., amplification, deletion, or 
normal) at each target region. We used the log-rank test 
to assess the associations between clinical outcomes and 
the presence of CNA events. The resulting p values were 
corrected for multiple testing by using the false discovery 
rate (FDR) procedure to obtain a maximum FDR of 5%. 
Significant associations were evident for different CNA 
events (Supplementary Tables S2 and S3). For example, 
copy number amplifications in PIK3CA were associated 
with an increased risk of local recurrence (hazard ratio 
[HR] = 2.33, p = 0.006), as well as lower disease-free (HR 
= 1.987, p = 0.0008), disease-specific (HR = 1.95, p = 
0.002), and overall (HR = 17, p = 0.007) survival rates. 
Patients with amplifications in the fibroblast growth factor 
receptor genes (FGFR1, FGFR2, and FGFR3) had a higher 
risk of distant metastases (p = 0.001, 0.013, and 0.0003, 
respectively). Copy number amplification in the ATM 
gene was associated with neck control (HR = 24.16, p = 

0.002) and disease-free (HR = 14.10, p = 0.009), disease-
specific (HR = 12.8, p = 0.012), and overall survival 
rates (HR = 11.89 and p = 0.015). We also observed that 
deletions in the APC and SMAD4 genes were significantly 
associated with neck control (HR = 9.742 and 16. 95, p = 
0.0001 and 0.00001, respectively) and disease-free (HR 
= 5.702 and 13.23, p = 0.003 and 0.00001, respectively), 
disease-specific (HR = 6.071 and 5.42, p = 0.002 and 
0.0002, respectively), and overall survival rates (HR = 
5.794 and 5.114, p = 0.002 and 0.0003). Besides, copy 
number deletions within the RB1 gene were significantly 
associated with local recurrence (HR = 4.998, p = 0.001), 
neck control (HR = 2.451, p = 0.011), and disease-free 
(HR = 3.021, p = 0.004), disease-specific (HR = 3.6, p 
= 0.001), and overall survival rates (HR = 2.558, p = 
0.015). We also identified copy number deletions in the 
tumor suppressor PTEN as significantly associated with 
poor disease-free (HR = 31.15, p = 0.00009), disease-
specific (HR = 31.53, p = 0.00009), and overall survivals 
(HR = 27.21, p = 0.0001). Other significant relationships 
are listed in Supplementary Table S3. To validate the 
associations identified in the discovery panel, we sought 
to confirm the results using a replication panel. The 
successfully replicated associations are summarized in 
Tables 1 and 2. With regard to the three fibroblast growth 
factor receptors, only FGFR1 amplification retained its 
significant predictive value for distant metastasis in the 
replication panel (Figure 4). Similarly, CNAs identified 
in the PIK3CA, RB1, ATM, SMAD4, and PTEN genes 
were consistently associated with different clinical 
outcomes (Supplementary Figures S1 and S2). Of all 
the validated associations, we found amplifications and 

Figure 2: Frequency of copy number deletions in different genes. Each bar indicates the number of samples with copy number 
deletions of each gene. The x-axis is sorted using the total frequency of CNA events. 
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Table 2: Validated associations between copy number deletions and clinical outcomes. 

Clinical outcome CNA-harboring gene Hazard ratio P value

Distant metastases PTEN 66.15871 0.0001

Distant metastases RB1 2.270029 0.011

Distant metastases TP53 2.025808 0.024

Distant metastases SMAD4 11.59482 0.00003

Disease-free survival APC 5.702536 0.003

Disease-free survival PTEN 31.15534 0.0009

Disease-free survival RB1 3.021541 0.004

Disease-free survival SMAD4 5.556417 0.003

Disease-specific survival APC 6.071924 0.002

Disease-specific survival MET 5.472896 0.017

Disease-specific survival PTEN 31.53222 0.0009

Disease-specific survival RB1 3.600392 0.001

Disease-specific survival SMAD4 5.426748 0.0002

Overall survival APC 5.794595 0.002

Overall survival MET 5.214931 0.020

Overall survival PTEN 27.2186 0.001

Overall survival SMAD4 5.144378 0.0003

Figure 3: A scatter gram and regression line depicting the relationship between SNVs and CNAs in OSCC specimens. 
The x-axis indicates the fraction of the 46 targeted genes harboring SNV, whereas the fraction of the 46 targeted genes harboring CNAs is 
depicted on the y-axis. Each point indicates a tumor specimen. In general, CNA were more common than SNV in the targeted genes. The 
regression line indicates an inverse relationship between the occurrence of SNVs and CNAs.
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Table 3: Multivariate analysis of clinicopathological traits and CNA events (validated in the 
replication panel) for the prediction of clinical outcomes.

Clinical outcome Predictor Hazard ratio P value

Second primary tumors SMAD4 deletion 1.81 0.016

Second primary tumors STK11 amplification 2.09 0.041

Second primary tumors TP53 deletion 1.72 0.025

Second primary tumors ATM amplification 1.72 0.041

Second primary tumors pN2c 2.08 0.05

Local recurrence Pathological tumor stage 1.4 0.011

Local recurrence RB1 1.52 0.049

Local recurrence FGFR1 amplification 2.12 0.011

Local recurrence PIK3CA amplification 2.63 0.007

Neck control Pathological stage 2.26 0.009

Distant metastases Extracapsular spread 3.39 0.000013

Distant metastases Pathological tumor stage 1.41 0.005

Distant metastases FGFR1 amplification 2.28 0.006

Disease-free survival Extracapsular spread 1.8 0.0004

Disease-free survival Pathological tumor stage 1.36 0.0002

Disease-free survival PIK3CA amplification 2.29 0.025

Disease-specific survival Extracapsular spread 2.14 0.00005

Disease-specific survival Pathological tumor stage 2.93 0.0003

Disease-specific survival PIK3CA amplification 2.26 0.019

Overall survival Extracapsular spread 1.74 0.0002

Overall survival Pathological tumor stage 1.38 0.00005

Overall survival PIK3CA amplification 2.12 0.002

1 Outcomes independently predicted by validated CNA are marked in bold.

Table 4: Comparison of predictive power of a clinical-factors-only model versus an integrated 
model comprising CNA and clinical risk factors.

Clinical outcome
C-index

P valueUsing clinical-factors-
only

Using both of CNA 
markers and clinical 

risk factors
Second primary tumors 0.67 0.71 0.073

Local recurrence 0.65 0.77 0.0032
Distance metastasis 0.72 0.82 0.0027

Disease-free survival 0.66 0.85 0.0003
Disease-specific survival 0.63 0.87 0.00006

Overall survival 0.66 0.73 0.048
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deletions occurring in the RB1 gene exhibited a significant 
prognostic impact. In both the discovery and validation 
sets, copy number amplifications of RB1 were rare, even 
though deletions were frequent. 

To assess the independent contribution of the 
identified CNA to clinical outcomes, we constructed 
multivariate Cox proportional hazard models using 
conventional clinicopathological risk factors and the 
CNA events listed in Tables 1 and 2 as covariates. The 
conventional risk factors included in the model were 
pathological stage, pathologically positive nodes, 
pathological T status, and extracapsular spread (ECS) 
[27-30]. The results indicated that pathological stage was 
an independent predictor of neck control (HR = 2.26, p 
= 0.009). With the only exception of neck control, CNA 
events retained their independent prognostic significance 
in the multivariate analysis. Specifically, amplification in 
FGFR1 was independently associated with the rates of 
both local recurrence (HR = 2.12, p = 0.011) and distant 
metastases (HR = 2.28, p = 0.006; Table 3). PIK3CA 
amplification also reached significance for the prediction 
of local recurrence (HR = 2.63, p = 0.007) and disease-free 
(HR = 2.29, p = 0.025), disease-specific (HR = 2.26, p = 
0.019), and overall survival rates (HR = 2.12, p = 0.002). 

Because CNA were significant independent 
predictors of outcomes even after allowance for traditional 
risk factors in multivariate models, we used real-time 
quantitative polymerase chain reaction (qPCR) to further 
validate our predicted copy number status. There were a 
total of 140 remaining DNA samples available for qPCR 
analyses, although their quantity was limited. Therefore, 
we selected prognostically important genes, PIK3CA 
and FGFR1, to be validated using qPCR because the 
CNAs in both genes were independently associated with 
multiple prognostic outcomes in the multivariate model. 
The experimental validation showed a mean accuracy of 
85%. Accuracy was defined as the fraction of samples 
whose copy number (CN) status were replicated in the 
qPCR results. Similar to PIK3CA amplification, PTEN 
deletion may constitutively activate the PI3K signaling 
cascade [31]. PTEN deletions were common in our study 
and its prognostic impact was successfully replicated in 
the independent cohort. We thus decided to confirm the 
CN status of PTEN using qPCR. The result revealed that 
80% of its CN status were validated. Common SNVs in 
TP53 have been previously associated with OSCC. The 
clinical significance of SNVs in TP53 is already well 
known. However, TP53 deletions were also observed 
in the current study. Thus, we further validated TP53 
deletion. The results of validation experiments indicated 
a mean accuracy of 87%. By contrast, several CNA 
associations involving amplifications in EGFR, RET, and 
ABL1 and deletion in BRAF were not significant after 
FDR correction but were still detected in the independent 
cohort. To confirm these CNA events, the validation of 
CNA in EGFR, RET, and BRAF by qPCR indicated a 

mean accuracy of 84%. As for ABL1, the accuracy was 
70%. It should be emphasized that not all true CNAs could 
be detected using qPCR method. The sensitivity of qPCR 
decreases in presence of low-copy number variations. 
Thus, the accuracy results may be only conservative 
estimates.

To further investigate whether the knowledge of 
CNA could provide additional predictive power when 
combined with clinical risk factors, we assessed the 
predictive power of the individual integrated models 
reported in Table 3 and their corresponding clinical-
factors-only models. For each prognostic outcome, the 
corresponding clinical-factors-only model included 
the clinical variables independently associated with 
the outcome of interest. Accordingly, we estimated the 
predictive power using the concordance index (c-index) 
for each prognostic outcome separately. The c-index was 
calculated using the R package survcomp to measure 
the probability of concordance between predicted and 
observed responses [32]. A c-index exceeding 0.5 implies 
good prediction ability, whereas a c-index equal to 0.5 
indicates random findings. When the c-index is less than 
0.5, the predicted response is reversed. The significance 
of a difference in c-index between the integrated and 
clinical-factors-only models was calculated as described 
by Haibe-Kains et al. [32]. Consequently, a c-index 
increase was observed in all outcomes when the CNA 
markers were added to the clinical-factors-only model 
(Table 4). However, for the second primary development, 
the additional predictive power of the CNA markers from 
0.67 to 0.71 was nonsignificant (p = 0.073). Notably, the 
c-index significantly increased from 0.63 to 0.87 when 
PIK3CA amplification was added to a model including 
extracapsular spread and pathological tumor stage for 
predicting disease-specific survival (p = 0.00006). The 
same promising improvement in the predictive power was 
observed when PIK3CA amplification was added to the 
model for disease-free survival (c-index: 0.66–0.85, p = 
0.0003).

Association between CNA and HPV status

In addition to risky oral habits, human 
papillomavirus (HPV) infections have been linked to 
oral carcinogenesis. Because HPV 16 and 18 have been 
associated with an increased risk of OSCC [33-35], we 
investigated whether an association exists between CNA 
and HPV infection status. Notably, PIK3CA amplification 
has been linked to HPV infection in oropharyngeal 
squamous cell carcinoma [36]. In accordance with 
these data, we found a significant association between 
copy number amplifications in PIK3CA and HPV 16/18 
infection (p = 0.004). These findings support both the 
validity of previous data and the robustness of our UDT-
Seq approach for determining CNA. We also observed that 
amplifications in ATM (p = 0.015), CDH1 (p = 0.029), and 
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NOTCH1 (p = 0.001) and deletions in TP53 (p = 0.04) 
were significantly more frequent in HPV 16/18-positive 
OSCC patients.

DISCUSSION

In this study of primary OSCC tumor specimens, we 
utilized UDT-Seq to identify CNA in cancer genes. Two 
normalization steps based on linear models were applied 
to overcome both coverage biases across target regions 
and batch effects across samples. The time complexity 
of our linear model is bounded by linear time, ultimately 
allowing its use in large datasets. To our knowledge, no 
other analytical method has been described for using 
UDT-Seq to detect amplifications or deletions in a single 
amplicon.

Because standard clinicopathological risk 
factors have limited ability to predict outcomes in 
the heterogeneous population of patients with OSCC, 
identifying new prognostic biomarkers is an urgent 
task. The prognostic CNAs identified in our study were 
consistent with those reported previously (Supplementary  
Table S4), supporting the methodological validity of our 
genotyping approach. For example, PIK3CA amplification 
was observed as ranging from 9% to 66% for OSCC 
[31], and FGFR1 amplification was found in 33% of 
patients with OSCC [37]. Deletions of PTEN (29%), 
RB1 (66%), SMAD4 (11%), and TP53 (56%) have been 
previously reported in independent OSCC cohorts [38-

41]. Accordingly, the prevalence of CNA in TP53 (28%), 
FGFR1 (17%), and RB1 (35%) was lower in this study 
as compared with previous research conducted in Western 
countries. In turn, deletions in PTEN (53%) and SMAD4 
(60%) were more frequently observed compared with 
previous studies. Such discrepancies may be explained at 
least in part by ethnic differences in risky oral habits. Betel 
quid is the main risk factor for OSCC in Eastern countries, 
whereas cigarette smoking and alcohol consumption are 
the main causative agents in the West [42, 43]. Hence, 
the underlying tumorigenic mechanism in OSCC in Asia 
might differ from that in Western countries. 

Because both the CNA amplifications and deletions 
observed in this study contribute to carcinogenesis in 
numerous solid malignancies [31, 37, 44-52], we sought 
to investigate their associations with clinical outcomes 
in two independent cohorts of patients with OSCC. The 
independent prognostic associations were successfully 
replicated (Tables 1 and 2). Thus, we explored the 
distributions of those prognostic CNA predictors using 
molecular pathways. Some of the prognostic CNA events 
identified in our study (e.g., FGFR1 amplification) were 
found to be distributed in the proteoglycan metabolism 
pathway, particularly in the heparan sulfate proteoglycan 
biosynthetic process. Heparan sulfate proteoglycans are 
involved in numerous tumorigenesis processes, including 
cell growth, differentiation, and angiogenesis. Because the 
enzymatic modification of heparan sulfate proteoglycans 
can dramatically modify tumor cell behavior [53], our data 

Figure 4: Kaplan-Meier estimates for distant metastases according to the presence or absence of FGFR1 amplifications 
(log-rank test, p = 0.001).
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suggest that the heparan sulfate proteoglycan biosynthetic 
process is a potential therapeutic target for patients with 
OSCC who have the CNA in this pathway. In addition, 
other prognostic CNAs also clustered in the PI3K–AKT 
signaling pathways. The PI3K–AKT signaling pathway 
comprises key survival factors involved in the control 
of cell proliferation, apoptosis, and oncogenesis and is 
hyperactivated in several malignancies [54]. Among the 
aberrant genes in this pathway, PIK3CA amplification 
retained its independent prognostic significance for 
multiple clinical outcomes in the multivariate analysis. 
PIK3CA amplification constitutively activates PI3K, 
thereby triggering continuous activation of downstream 
signaling (e.g., mTOR pathway). Interestingly, PIK3CA 
amplification has been shown to be correlated with 
metastatic OSCC [31]. Other CNA events in the PI3K–
AKT signaling pathway, such as loss of the PTEN 
suppressor, could exert the same effect as PIK3CA 
amplification [31]. Furthermore, we also observed 
prognostic CNAs accumulated in the FOXO signaling 
cascade, which is downstream to the PI3K–AKT pathway. 
The FOXO family of transcription factors are master 
regulators of cell growth, proliferation, differentiation, 
apoptosis, and autophagy [54]. Notably, phosphorylation 
of FOXO by AKT inhibits their transcriptional functions, 
causing cell survival and proliferation [54]. Hence, 
in the absence of PTEN-induced downregulation of 
AKT, FOXO transcription factors are constitutively 
phosphorylated, thereby inhibiting the activation of the 
programmed cell death pathway. However, copy number 
deletions in PTEN were common (52%) in the current 
study. FOXO signaling may be constitutively blocked 
in patients with OSCC who have PTEN deletion. In 
light of these findings, the repression of the PI3K–AKT 
pathway (e.g., by PI3K inhibitors) and induction of 
FOXO transcription factors (e.g., by AKT inhibitors that 
suppress FOXO phosphorylation) may be considered as 
attractive therapeutic targets for patients with OSCC who 
have the CNAs in those pathways. Indeed, inhibitors of 
the PI3K–AKT pathway are currently in various stages 
of development in clinical trials [55-59]. Our results may 
thus provide a basis for genomic-driven clinical trials in 
OSCC patients aimed at developing targeted drugs.

However, our current findings should be interpreted 
within the context of some limitations. Specifically, betel 
quid chewing is endemic in the study area and caution 
should be exercised when generalizing the results to other 
populations. Nonetheless, using UDT-Seq to determine 
CNA may facilitate the molecular classification of OSCC 
into prognostically relevant subtypes and provide new 
insights into different oncogenic pathways. Although 
UDT-Seq could miss large CNA events, it can be clinically 
useful for the rapid identification of CNA patterns in 
OSCC. Furthermore, the UDT-Seq assay is capable of 
evaluating multiple genes in target pathways (e.g., FOXO 
signaling) in a simultaneous manner, ultimately reducing 

costs and making it appropriate for clinical applications.
In conclusion, the proposed linear model of CNA 

discovery is feasible for analyzing UDT-Seq data. This 
is the first study investigating the association of UDT-
Seq-identified CNA with clinical outcomes in OSCC 
specimens. The additional predictive power of the CNA 
markers was also demonstrated. Importantly, the identified 
CNA were located in clinically actionable genes that may 
serve as therapeutic targets. There are two principal routes 
through which our current results may be translationally 
relevant. First, identifying the main disturbed pathways 
(i.e., the proteoglycan metabolism, FOXO and PI3K–
AKT signaling) can aid in identifying novel therapeutic 
strategies. Second, CNA-based biomarkers can improve 
clinical outcome prediction and the monitoring of disease 
progression and treatment response. Future studies should 
provide proof of principle that combining these molecular 
classifiers with traditional clinicopathological risk factors 
could improve prediction accuracy.

MATERIALS AND METHODS

Ethics statement

This study was performed according to national and 
international guidelines and was approved by the Research 
Ethics Board of Chang Gung Memorial Hospital (CGMH 
101-4457B). The requirement for patient consent was 
waived because of the retrospective nature of the study.

Study participants

We retrospectively reviewed the medical records 
of 310 patients with previously untreated primary OSCC 
who were referred for radical tumor excision and neck 
dissection between 1996 and 2009. Fourteen people 
without malignancies served as controls. All of the 
participants underwent an extensive evaluation before 
primary surgery. Patients were staged according to the 
2010 American Joint Committee on Cancer staging 
criteria. The clinicopathological traits and follow-up 
data of each patient were obtained from general practice 
records. The following variables of all participants were 
collected: age at OSCC onset, sex, risky oral habits 
(cigarette smoking, alcohol drinking, betel quid chewing), 
ECS, and follow-up length. 

In our hospital, collecting sufficient normal oral 
tissue from patients with OSCC is challenging. However, 
basal copy number information could also be obtained 
from the general population. Blood lymphocytes from 
healthy humans have also been used as a diploid standard 
in OSCC [60]. Therefore, we used DNA from the 
peripheral blood mononuclear cells (PBMC) of 16 healthy 
donors to generate basal sequencing data. These PBMC 
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samples were obtained from regular healthy check-up 
people at Chang Gung Memorial Hospital. Genomic DNA 
was prepared using the Qiagen Mini Kit (Qiagen, Hilden, 
Germany). DNA concentration was determined using the 
Qubit fluorometer (Invitrogen, Calsbad, California, USA). 
DNA integrity was analyzed using the Agilent Bioanalyzer 
2100. The same sequencing procedure was conducted for 
both tumor and normal samples (see below). 

Surgery and adjuvant therapy

The primary tumors were excised with safety 
margins of 1 cm or more (both peripheral and deep 
margins). Level I–V neck dissections were performed in 
patients with cN+ disease, whereas cN– patients received 
level I–III neck dissections. Postoperative radiotherapy (60 
Gy) was administered to patients exhibiting pathological 
risk factors. The radiation field included the entire tumor 
bed area (with 1–2 cm margins) and regional lymphatics. 
Concomitant chemoradiation (66 Gy) with cisplatin-based 
regimens were administered to patients with ECS, multiple 
lymph node metastases, and positive margins.

Ultra-deep targeted sequencing

The Ion Torrent AmpliSeq™ Cancer Panel (Life 
Technologies, Carlsbad, California, USA) allows the 
enriching of up to thousands of genomic targets from 10 
ng of DNA extracted from FFPE samples by using the 
QIAmp DNA FFPE DNA extraction kit (Qiagen, Hilden, 
Germany). The AmpliSeq™ panel comprises 189 primer 
pairs that are designed to amplify the mutation hotspots of 
46 oncogenes and tumor suppressor genes (Supplementary  
Table S1). After 20 initial PCR cycles, the amplicons 
were ligated with sequencing barcode adapters and then 
subjected to five additional cycles. Barcoded libraries 
were produced with 50 ng of amplicons by using the Ion 
Plus Fragment Library Kit (Life Technologies), and the 
resulting products were sequenced on an Ion 318 chip.

CNA detection

In general, the assumption of any read depth of 
coverage method is that the read density of a target 
region is roughly proportional to the number of copies 
in that region. However, the quantitative relationship 
between the actual copy number and sequence depth 
may be distorted by the efficiency of multiplex PCR 
method, which can introduce both region- and sample-
specific biases. To address this potential problem, we 
developed a linear model to normalize sequencing data. 
Because we examined short-length mutation hotspots, we 
assumed a consistent copy number within any specific 
region. The average read depth of each target region was 

consequently used to indicate the sequence abundance 
of the corresponding loci. Before normalization, log-
transformation was performed to stabilize the variance of 
the average read depth of each region. Consequently, the 
variability of each read depth was unrelated to its mean 
value. The normalization step was aimed at determining 
the extent of CNA relative to the control samples. To 
produce normalized signals, the proposed method enables 
correction for both region- and sample-specific biases 
through the following steps:
Step 1: Assessment of region-specific effects using 
control samples

We initially reasoned that the PCR efficiency of 
the target sequences may vary across regions because of 
guanine cytosine content, size, and sequence complexity. 
Therefore, we used control samples to generate a reference 
measure of region-specific variation across the target 
regions. The availability of a set of control samples is 
essential for studies without paired matched controls.

Suppose that  is the average read depth of the 

ith region in the jth control sample, where 1,...,i m=

, 1,...,j k= . The region-specific effect in the control 
samples can be calculated as follows:

 2log ( )ij N i j ijy µ α β ε= + + +
 (1)

where Nµ  represents the overall log control 

sample mean, iα  is the effect of the ith genomic region, 

jβ  is the effect of the jth control sample, and ijε  is the 
random error of a normal distribution with an expectation 

of 0  and variance of 
2
Nσ . Because the region profiles 

denoted by 1 2, ,...,i i iky y y  exhibit high similarity among 

different controls, the estimate ˆiα  represents the relative 
sequencing preference among different regions. The 
control sample mean and the intrinsic region-specific 
effect,  may be considered as the basal average 
read depth of region i. 
Step 2: Correction for region- and sample-specific 
effects in cancer specimens

In general, PCR efficiency may vary across samples. 
Such a bias may be due to different DNA concentrations, 
hybridization temperatures, and batch effects. Therefore, 
we identified a strategy to minimize this analytical 

source of confounding. Suppose that ijy
 is the average 

read depth of the ith region in the jth tumor sample, where 
1, 2,...,i m= , and 1, 2,...,j l= . After adjustment for 

region-specific baseline values, the read depth of region i 
in sample j can be modeled as:
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ij C j ijz µ β ε= + +
 (2)

where 2 ˆˆlog ( )ij ij N iz y µ α= − −
, 1, 2,...,i m=

, and 1, 2,...,j l= ; Cµ  indicates the overall tumor 

sample mean after removing the region effect; jβ  

is the effect of the jth tumor sample; and ijε  indicates 
the random error following a normal distribution 

with an expectation of 0  and variance 
2
Cσ . After 

fitting the model with tumor samples, the residual 

îjε  is calculated by removing the estimates of Cµ  

and ijz
 from the adjusted read depth ijz

 as follows: 


2 2 2ˆˆ ˆˆ̂ ˆ̂ ˆlog ( ) log log

ˆ2 N i ij

ij ij
jij ij c ij N i ij z

ij

y y
z y z

yµ αε µ µ α + +

  
= − −β = − − − = =        

The equation indicates that the residual îjε  is the 

log-ratio between ijy
 and

ˆijy
, where ijy

 is the observed 

average read depth and 
ˆijy

 is the corresponding estimate 
of the expected average read depth for the ith region in the 

jth tumor sample. Consequently, the residual îjε  reflects 
the discrepancy between the observed read depth and the 
expected read depth mean. Accordingly, the relative copy 
number change of each tumor specimen may be inferred 

from the residuals. For the residual îjε  obtained through 
the normalization step, we have to determine which 
deviation from the zero level is sufficient for calling a 
copy number change. Because the residuals may vary 
slightly across regions, we scaled down the residuals in 
each region with their own standard deviations to make the 
adjusted residuals comparable across different regions. Th 
process is summarized as follows:

1. For region i , the standard deviation is  is 

calculated from the residuals 1 2ˆ̂̂ , ,...,i i ilε ε ε .
2. The adjusted residuals are calculated as 

ˆ
ˆ ' ij

ij
is

ε
ε =

.
Notably, we did not adjust the residuals with the 

region-specific mean because that may have overcorrected 
the residuals in highly recurrent CNA regions. Instead, 
the overall mean of all adjusted residuals was used as a 
reference point. Starting from these assumptions, CNA 
calls can be determined at the resolution of individual 
regions. We defined a region as harboring copy number 
amplifications if the adjusted residual exceeded γ standard 
deviations above the overall mean, where the standard 

deviation and mean are calculated from all the adjusted 
residuals. A copy number deletion was considered to be 
present if the adjusted residual was less than γ standard 
deviations below the overall mean. Our approach allowed 
the determination of CNA calls in each region of tumor 
specimens. As expected, the higher the γ applied, the 
fewer false CNAs were included.

CNA validation by quantitative PCR

CNAs were validated by using TaqMan® Copy 
Number Assays to perform qPCR. TaqMan Copy Number 
Assays (Life Technologies) were performed according to 
the manufacturer instructions. We used PBMC samples 
from healthy donors as the controls and the qPCR values 
were normalized to the endogenous control, RNase P. A 
total of 10 ng genomic DNA from each sample was used 
as template. The PCR conditions were as follows: an initial 
denaturation step at 95°C followed by 40 cycles consisting 
of a 15 sec denaturation at 95°C, a 60 sec annealing and 
extension step at 60°C. All data were analyzed with the 
typical comparative 2−ΔΔCt cycle threshold method using 
the CopyCaller® Software v2.1.

Statistical analysis for clinical association

The study endpoints included the rates of second 
primary tumors, local recurrence, neck recurrence, 
distant metastases, disease-free survival, disease-specific 
survival, and overall survival. Overall survival and 
disease-specific survival were calculated from the date of 
primary surgery to the date of death from any cause and 
OSCC, respectively. Disease-free survival was measured 
as the time elapsed from the date of primary surgery to 
the date of tumor relapse. The rates of local recurrence, 
neck recurrence and distant metastases were calculated 
from the date of surgery to the date of local, neck, and 
distant events, respectively. Survival curves were plotted 
using the Kaplan-–Meier method and compared using the 
log-rank test. Multivariate hazard ratios for time-to-event 
outcomes were calculated using forward stepwise Cox 
regression models. The association between HPV infection 
status and CNA in each target region was analyzed using 
the χ2 test. All statistical calculations were performed 
using R package and the SPSS software package 21.0 for 
Windows (SPSS Inc., Chicago, Illinois, USA).
Consistency score

To calculate the percentage of copy number-
altered amplicons that harbored the same CNA status of 
their neighboring amplicons within the same gene, we 
formulated a consistency score C, as follows:

c

a

Nc
N

=



Oncotarget19903www.impactjournals.com/oncotarget

where Na is the number of copy number-altered 
amplicons within a gene and Nc is the number of copy 
number-altered amplicons whose CNA status is consistent 
with their neighboring amplicons.
Concordance index

The concordance index indicates the fraction of 
concordant pairs of patients among all possible pairs. The 
index can be interpreted as indicating the probability that, 
given two randomly selected patients, the patient who 
experiences the event at a later time point had a lower 
risk of the event [61, 62]. The concordance index was 
calculated as follows:

( ) ( )
,

| |

i jf x f x
i j

l
c index

<
∈Ρ− =

Ρ

∑

where f(xi) and f(xj) are the risk predictions of 
patients i and j, respectively, and the indicator function 
lf(xi)<f(xj) = 1 if f(xi)<f(xj) and 0 otherwise. P is the set of all 
possible pairs of patients.
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