

The proximal origin of SARS-CoV-2

 $\langle + \rangle$

|+||

*

Nature Medicine | www.nature.com/naturemedicine

黃琬婷 醫師

黃獻立 醫檢師

檢驗醫學部

ູນີ

An evidence-based view to stop the rumors that SARS-CoV-2 is originated from laboratory

SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus.

- Deduced about the origin of SARS-CoV-2 from comparative analysis of genomic data
- A perspective on the notable features of the SARS-CoV-2 genome
- To discuss scenarios by which SARS-CoV-2 could have arisen

Fig. 1

Features of the spike protein in human SARS-CoV-2 and related coronaviruses. (From: The proximal origin of SARS-CoV-2)

Fig. 1 Features of the spike protein in human SARS-CoV-2 and related coronaviruses. (From: The proximal origin of SARS-CoV-2)

>O-linked glycans \rightarrow mucin-like domain \rightarrow shielding epitopes \rightarrow immunoevasion

It is improbable that SARS-CoV-2 emerged through laboratory manipulation

The genetic data

SARS CoV-2 not derived from any previously used virus backbone

02

The optimized RBD for binding to human ACE2

with an efficient solution different from those previously predicted

Two scenarios plausibly explaining the origin

- natural selection in an animal host before zoonotic transfer
 - natural selection in humans following zoonotic transfer

Natural selection in an animal host before zoonotic transfer

- Bat-RaTG13 is ~96% identical overall to SARS-CoV-2
- Some pangolin coronaviruses with strong similarity to SARS-CoV-2 in the RBD, including all six key RBD residues
- Mutations occurring near the S1–S2 junction of coronaviruses
- For a precursor virus to acquire both the polybasic cleavage site and mutations in the spike protein suitable for binding to human ACE2
 - a high population density of an animal host (to allow natural selection to proceed efficiently)
 - an ACE2-encoding gene similar to the human ortholog

Natural selection in humans following zoonotic transfer

A progenitor of SARS-CoV-2 jumped into humans

- adaptation during undetected human-tohuman transmission
- acquiring the genomic features of SARS-CoV-2

The presence in pangolins of an RBD very similar to that of SARS-CoV-2

- probably the virus that jumped to humans
- the insertion of polybasic cleavage site occurring during human-to-human transmission

A period of unrecognized transmission in humans between the initial zoonotic event and the acquisition of the polybasic cleavage site

Selection during passage?

a much stronger and more parsimonious explanation

- only after prolonged passage of lowpathogenicity avian influenza virus
- repeated passage in cell culture or animals with ACE2 receptors similar to those of humans

The acquisition of predicted O-linked glycans

such features suggesting the

involvement of an immune system

- 若能在動物身上觀察到中間型或完全一致蛋白酶有效切割位點 (polybasic cleavage sites) 會進一步支持自然選擇假設
- 目前證據指向SARS CoV-2不是人為操縱的病毒,因為觀察到優化的RBDs和polybasic cleavage sites
- 詳細了解動物病毒如何躍入物種邊界,有效地感染人類,對於預防 人畜共患疾病是有幫助的

謝 謝 静 騎 指 教

(+)

ъ С