EBM Journal Club: Does Ginkgo Biloba improve memory in elder group

指導主治醫師:顏宏融醫師

指導總醫師: 陳星諭 醫師

報告:中醫內兒科 R2 葉兼碩

Memory loss in elder >> Dementia

- Defination
- Diagnosis
- Prognosis

Why so serious?

• 記憶力對老人的重要性?

Any way to improve memory in elder?

- 運動?
- 麻將?打電動?
- 飲食?藥物?
- •
- 大部分人的習慣—吃什麼會好??

Any way to improve memory in elder?

- 運動?
- 麻將?打電動?
- 飲食?藥物?
- •
- 大部分人的習慣—吃什麼會好??
- 銀杏能否改善老年人的記憶力?

Background

• The standardized Ginkgo biloba extract EGb 761® is one of the most widely used herbal remedies for dementia and cognitive impairment and remains one of the best evaluated and characterized extracts.

DeFeudis FV, Drieu K: Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug

Targets 2000, 1:25-58.

• Since 2000, according to the current ATC-classification, Ginkgo biloba special extract is listed in the group of anti-dementia drugs together with cholinesterase inhibitors and memantine.

EBM 5 STEPs

問	Asking [PICO format] Answerable clinical question	銀杏能否改善老年人記憶力
查	Assessing Searching the best evidence	Pub Med, Med line, Science-direct, Cochrane
讀	Appraisal Critical Appraisal the evidence	V: validity – power, bias I: Impact – size of effect P: Practice – usefulness in clinical
用	Apply Integrating with clinical practice	
審	Auditing Evaluate effective and efficiency	

Ref: 林口長庚實證醫學講義[初階]

Asking-PICO


PICO identification								
Р	Problem Patient	Memory loss [dementia] in Elders (> 65 y/o)						
I	Intervention	Ginkgo Biloba PO						
С	Comparison	Ginkgo Biloba V.S. Placebo						
O	Outcome	Improve memory or not						

Searching Key word

- Ginkgo Biloba,
- Memory, Dementia
- Elder, old age

Assessing

• EBM 金字塔

PubMed

- Ginkgo biloba and dementia
 - Systemic review: 16 article [2001-2011]

Cochrane Database Syst Rev. 2009 Jan 21;(1):CD003120. **Ginkgo biloba for cognitive impairment and dementia.**Birks J, Grimley Evans J.

PubMed

- Ginkgo biloba and dementia
 - Systemic Review: 42 article [1998-2011]

BMC Geriatr. 2010 Mar 17;10:14.

Effects of Ginkgo biloba in dementia: systematic review and meta-analysis.

Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN.

Fortschr Neurol Psychiatr. 2009 Sep;77(9):494-506. Epub 2009 Jul 20. Ginkgo biloba extract EGb 761 in the treatment of dementia: evidence of efficacy and tolerability. [Article in German] Kasper S, Schubert H.

Appraisal

- <u>CEBM</u>[2005, Oxford]
- Jadad scale
- NHS-CASP

Systemic Review Appraisal sheet

- 1) What question [PICO] did the systemic review address?
- 2) Is it unlikely that important, relevant studies were missed
- 3) What the criteria used to select articles for inclusion appropriate?
- 4) Were the included studies sufficiently valid for the type of question asked?
- 5) Were the results similar from study to study?
- 6) How are the result presented?

Effects of Ginkgo biloba in dementia: systematic review and meta-analysis

Stefan Weinmann, Stephanie Roll, Christoph Schwarzbach, Christoph Vauth, Stefan N Willich

BMC Geriatrics 2010, 10:14

Impact Factor:

Background

 Most previous reviews have shown inconsistent results and fail to draw firm conclusions whether Ginkgo biloba has patient-relevant benefits in people with a diagnosis of dementia.

> Ernst E, Pittler MH: Ginkgo biloba for vascular dementia and Alzheimer's disease: updated systematic review of double-blind,

• A major limitation of the available Cochrane Review on the effectiveness of Ginkgo biloba is the combined evaluation of cognitive decline and dementia. No subgroup analyses were performed.

> Birks J: Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev 2009, 21(1):CD003120.

Background

• German Health Technology Assessment Institute IQWiG (Institute for Quality and Efficiency in Health Care) published a favorable report on the effectiveness of Ginkgo biloba, which was, how- ever, limited to Alzheimer's disease and contradicted the Cochrane review.

Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen:

Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen: Ginkgohaltige Präparate bei Alzheimer Demenz. Abschlussbericht A05-

19B. Köln 2008.

We performed a <u>systematic review on the effects of Ginkgo biloba in Alzheimer's disease as well as vascular and <u>mixed dementia</u> covering a variety of outcome domains.
</u>

Methods

- Data sources
 - Database: Medline, EMBASE, PsycINFO, CINAHL, the Cochrane Database of systemic Reviews, Cochrane Controlled Trials Register.

Methods

- Terms
 - Dementia
 - Dementia; Alzheimer
 - Ginkgo biloba
 - ginkgo; ginko; gingko; bilo- balid; tebonin; egb 761; li 1370
 - Identify clinical trial
 - (clinical AND trial*); random*; placebo*; (controlled AND trial*); (mul- ticent* AND stud*); (comparative AND stud*); follow- up; (research AND design)

Method

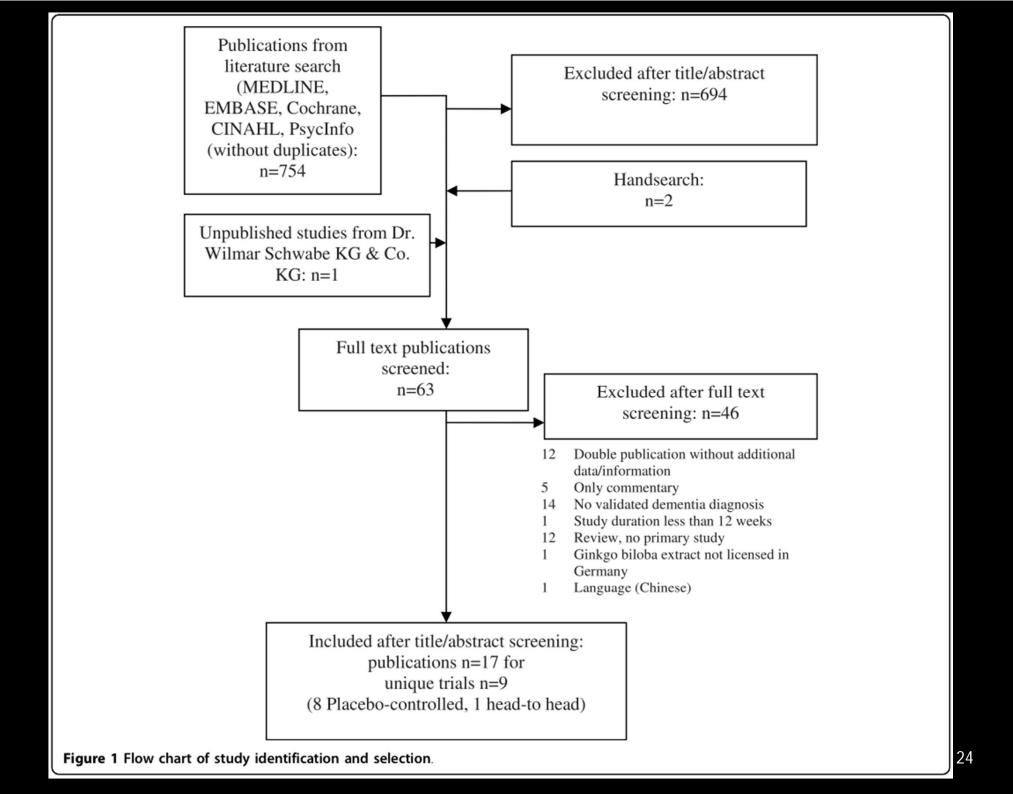
Selection

- Controlled clinical trials, with or without randomization
- Assessing the effects of treating people with a diagnosis of Alzheimer's disease, vascular or mixed dementia according to internationally valid diag- nostic criteria
- With a standardized Ginkgo biloba extract.

Method

- Inclusion Criteria
 - internationally accepted diagnostic for the dementia diagnosis
 - minimum treatment duration of 12 weeks
 - minimum number of participants of ten per group
 - availability of a full-text publication

Method


- Exclusion Criteria
 - studies with a majority of people with specific types of non-vascular and non-Alzheimer's dementia
 - publication language other than English, German,
 French, Italian or Spanish

Data extraction and critical appraisal

- Study selection and appraisal of studies were performed independently by two researchers
- Information was extracted via a standardized checklist

Result

- Search in MEDLINE, EMBASE, Cochrane, PsycINFO and CINAHL yielded <u>754</u> clinical publications.
- 63 publications were included in the full-text screening
- 17 publications reporting 9 individual stu- dies, all using the standardized extract EGb 761.

Study characteristic

- All included studies were randomized
- All studies were described as double-blind
- 8 studies were placebo-controlled
- 1 study was a head-to-head trial with donepezil as comparison group

Table 1 Methodological quality of included studies

Study Authors, date	Randomization/ allocation concealment	Blinding of patients/outcomes assessment	Prior estimate of sample size	Withdrawals per group reported	ITT analysis adequate	Report of measures of precision	Data inconsistencies	Funding reported
Kanowski et al. 1996/2003 [29,36]	Yes/yes	Yes/yes	Partly ^a	Partly ^b	Yes	Yes	No	No
Le Bars et al. 1997/2000 [30,37]	Yes/yes	Yes/unclear	Yes	Yes	Yes	Yes	No	Yes
Maurer et al. 1997 [31]	Yes/unclear	Yes/unclear	No	Yes	No	No	No	No
van Dongen et al. 2000 [34,45]	Yes/yes	Yes/yes	Yes	Yes	No	Yes	Yes ^c	Yes
Schneider et al. 2005 [33]	Yes/yes	Yes/yes	Yes	Yes	Yes	Yes	No	Yes
Yancheva et al 2009 [35]	Yes/unclear	Yes/unclear	No	Yes	Yes	Yes	Yes	Yes
Napryeyenko et al. 2007 [32]	Yes/unclear	Yes/unclear	Yes	Yes	Yes	Yes	No	Yes
McCarney et al. 2008 [2]	Yes/yes	Yes/yes	Partly ^a	Yes	Yes	Yes	No	Yes
Ihl et al. 2009	Yes/yes	Yes/yes	No	Yes	Yes	Yes	No	Yes

a: Less patients were included than planned; b: Drop-out rates were reported, but without reference to study arm; c: Multiple re-randomization schemes. ITT = Intent-to-treat analysis.

- Trials were of 12 to 52 weeks duration and included 2372 patients in total
- Heterogeneity among studies was high.

Ginkgo		PI	Placebo			Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ihl 2008	-1.4	2.8	202	0.3	2.8	202	15.2%	-0.61 [-0.81, -0.41]	*
Kanowski 1996	-2.1	3.15	106	-1	3.05	99	14.9%	-0.35 [-0.63, -0.08]	
LeBars 1997	-0.3	5.35	134	1	5.32	134	15.0%	-0.24 [-0.48, -0.00]	-
Maurer 1997	-2.9	2.5	9	8.0	3.8	9	10.3%	-1.10 [-2.10, -0.09]	
Napryeyenko 2007	-3.2	2.3	198	1.3	2.4	197	15.0%	-1.91 [-2.15, -1.67]	-
Schneider 2005	1.6	5.8	169	0.9	5.6	174	15.1%	0.12 [-0.09, 0.33]	+
vanDongen 2000	8.0	4.1	79	1.2	3.8	40	14.4%	-0.10 [-0.48, 0.28]	+
Total (95% CI) 897 855 100.0% -0.58 [-1.14, -0.01]								•	
Heterogeneity: Tau ² =									
Test for overall effect: Z = 2.01 (P = 0.04)									-4 -2 0 2 4 Favors Ginkgo Favors Placeb

ADAS-cog=Alzheimer's disease Assessment Scale cognitive subscale; ITT=intent-to-treat; LOCF=last observation carried forward; SD=standard deviation; SKT=Syndrom Kurz-Test; 95% CI=95% confidence interval.

Figure 2 ITT/LOCF change scores for cognition outcomes (ADAS-cog, SKT) by individual trial and pooled standardized mean difference compared with placebo.

	G	inkgo		PI	acebo			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Ihl 2008	-0.2	0.73	202	0	0.73	202	17.3%	-0.27 [-0.47, -0.08]	
Kanowski 1996	-0.8	2.1	106	-0.4	2.03	99	16.5%	-0.19 [-0.47, 0.08]	
LeBars 1997	-0.05	0.42	138	0.07	0.41	132	16.9%	-0.29 [-0.53, -0.05]	
Napryeyenko 2007	-1.9	2.7	198	0.9	2.4	197	17.2%	-1.09 [-1.31, -0.88]	
Schneider 2005	-0.1	0.4	169	-0.1	0.3	174	17.2%	0.00 [-0.21, 0.21]	+
vanDongen 2000	1.4	4.8	79	1.4	5.5	40	15.0%	0.00 [-0.38, 0.38]	
Total (95% CI)			892			844	100.0%	-0.32 [-0.66, 0.03]	•
Heterogeneity: Tau ² =									
Test for overall effect: Z = 1.77 (P = 0.08)									-2 -1 0 1 2 Favors Ginkgo Favors Placebo

ITT=intent-to-treat; LOCF=last observation carried forward; SD=standard deviation; 95% CI=95% confidence interval.

Figure 3 ITT/LOCF change scores for activities of daily living outcomes by individual trial and pooled standardized mean difference compared with placebo.

- Withdraws
 - No different btw medication and placebo

 We found a statistically significant advantage of Ginkgo biloba compared to placebo in improving cognition for the whole group of patients with Alzheimer's disease, vascular or mixed dementia.

- Regarding activities of daily living, there was no significant difference for the whole dementia group.
- However, in the subgroup of patients with Alzheimer's disease, the advantage of Ginkgo biloba compared to placebo was statistically significant.

- There was no consistent evidence of a benefit of Ginkgo biloba in the treatment of neuropsychiatric symptoms.
- However, the presence of psychological or behavioral symptoms in dementia may be an effect modifier.

Author's conclusion

• Statistically significant advantage of Ginkgo biloba compared to placebo in improving cognition for the whole group of patients with Alzheimer's disease.

Apply

Auditing

- 我提出的問題是否具有臨床重要性?
 - 我是否明確的陳述了我的問題?
- 我是否已盡全力力搜尋?
 - 我是否從大量的資料庫來搜尋答案?
- 我是否盡全力做評讀?
 - 評讀後,我是否做出了結論?
- 我是否覺得這個進行實證醫學的過程是值得的?
- 我還有那些問題或建議?