SAH

Definition of SAH

• Blood accumulation in subarachnoid space

Etiology of SAH

- Mostly trauma
- In spontaneous SAH
 - Rupture intracranial aneurysm 75-80%
 - Arteriovenous malformation 4-5%
 - No cause in 14-22%
 - Vasculitis
 - Tumor
 - Cerebral artery dissection
 - Rupture of small superficial artery

Incidence of SAH

- Annual rate of aSAH in USA : 9.7 14.5 / 100,000
- Higher incidence in Japan and Finland
- Increase with age (avg. age of onset > 50)
- Higher in women

Risks factors for SAH

- Behavioral
 - Hypertension
 - Cigarette smoking
 - Alcohol abuse
 - Sympathomimetic drugs
- History of cerebral aneurysm
- Family history of aneurysms
 - (at least 1 first-degree family members and esp if \geq 2 affected)
- Genetic syndromes

Symptoms of SAH

- Sudden onset of severe Headache
- Usually with vomiting, syncope, neck pain, and photophobia
- Loss of consciousness
- Focal cranial nerve deficits
 - Most common CN3 palsy due to aneurysmal compression
 - Causing diplopia and ptosis

Headache

- Most common symptoms, present in up to 97% of cases
- Usually severe (Most worst headache of my life)
- H/A may resolve (Sentinel hemorrhage or warning headache) 30-60%
- Warning headache may also occur without SAH
 - Aneurysmal enlargement or hemorrhage confined within the aneurysmal wall

Signs

- Meningismus
 - Nuchal rigidity, often ensues in 6 24 hrs
- Hypertension
- Focal neurological deficits
- Obtundation
- Coma
- Ocular hemorrhage

Presentation other than major rupture

- Thought of as warning signs
- Mass effect
- Minor hemorrhage
- Small infarcts or transient ischemia due to distal embolization
- Seizures
- Headache without hemorrhage

Cranial neuropathies from aneurysm compression

- Oculomotor palsy (ONP)
 - Occurs in 9% of p-com aneurysm
 - Less common in basilar apex aneurysm
 - Extraocular muscle palsy, ptosis, dilated unreactive pupil
- Visual loss
 - Compressive optic neuropathy in ophthalmic a. aneurysms
 - Chiasmal syndromes due to ophthalmic, a-comm, or basilar apex aneurysms
- Facial pain syndromes in ophthalmic or maxillary n. distributions
 - Occur with intracarvenous or supraclinoid aneurysms

Locations of cerebral aneurysm

- 1.85-95% in carotid system
 - ACoA 30%
 - P-comm 25%
 - MCA 20%
- 5 15% in posterior circulation
 - 10% in basilar artery
 - 5% in vertebral artery
- 20-30% of patient have multiple aneurysms

Coma following SAH

- Increased ICP
- Damage to brain tissue from ICH
- Hydrocephalus
- Diffuse ischemia
- Seizure
- Low blood flow (reduce CBF) due to reduce cardiac output

Work-up of suspected SAH

- Test to diagnose SAH
 - Non-contrast high-resolution CT
 - If CT is negative -> Lumbar puncture in suspicious cases
- Test to identify source of SAH
 - CTA, MRA or angiography

Grading SAH

- Hunt and Hess Grade
 - Grade 1 and 2 : operate as soon as aneurysm was diagnosed
 - Grade \geq 3 : managed until the condition improved to grade 1 or 2
- WFNS grading
 - Use GCS and major focal deficits
 - Major focal deficits
 - Aphasia, hemiplegia, hemiparesis

Hunt and Hess Grade

ole 74.2 Hunt and Hess classification^a of SAH⁹⁶

ade	Description				
	asymptomatic, or mild H/A and slight nuchal rigidity				
	Cr. N. palsy (e.g. III, VI), moderate to severe H/A, nuchal rigidity				
	mild focal deficit, lethargy, or confusion				
	stupor, moderate to severe hemiparesis, early decerebrate rigidity				
	deep coma, decerebrate rigidity, moribund appearance				
d one gr	ade for serious systemic disease (e.g. HTN, DM, severe atherosclerosis, COPD) or severe vasospasn				

arteriography.

riginal paper did not consider patient's age, site of aneurysm, or time since bleed; patients were graded or mission and pre-op

WFNS Grade

ble 74.4 WFNS SAH grade98

/FNS grade	GCS score ^a	Major focal deficit ^b
	15	
	13–14	-
	13-14	+
	7–12	+ or –
	3–6	+ or –

GCS = Glasgow Coma Scale, see ► Table 18.1

phasia, hemiparesis or hemiplegia (+= present, -= absent) ntact aneurysm

Hydrocephalus

- The frequency of hydrocephalus 15-20%
 - with 30 60% showing no impairment of consciousness
- 3% of those without HCP on initial CT develop HCP within 1 week

Factors associates with acute HCP

- Increasing age
- Admission CT finding
 - IVH
 - Diffuse SAH, thick focal accumulation
- Hypertension
- Posterior circulation aneurysms

Treatment

- Half the patients with acute HCP improved spontaneously
- Patients in poor grade (H&H IV-V) with large ventricles should consider ventriculostomy, which caused improvement in 80% of pts
- Increased risks of aneurysmal rebleeding in pts undergoing ventriculostomy shortly after SAH
- Recommend keep ICP 15-25 mmHg to avoid rapid pressure reduction

Initial management concerns

- Rebleeding
 - Risk factor : female, high grade SAH, large aneurysm, SBP > 175 mmHg
- Hydrocephalus
- Delay cerebral ischemia (DCI)
- Hyponatremia with hypovolemia
- DVT and pulmonary embolism
- Seizures
- Augmenting cerebral O2 delivery

Initial management

- Level I
- Administer oral nimodipine to all patients with aSAH
- Maintain euvolemia and normal circulation blood volume

• Level 2

- Control hypertension
 - The ideal BP to reduce the risk of rebleeding has not been established
 - Reasonable target : SBP < 160 mmHg

Blood pressure and volume managment

- Unsecure aneurysm
 - Gentle volume expansion with slight hemodilution and mild elevation of BP
 - Help prevent effect of vasospasm
- Initial blood pressure
 - Decrease SBP to < 160 mmHg
 - Nicardipine or clevidipine should be used

Post-SAH seizures

- Level II
 - Prophylactic AEDs may be considered
 - Long term use of AEDs may be considered with known risk factors for delay seizure disorder
- Level III
 - The routine long-term use of AED is NOT recommended

Rebleeding

- Untreated ruptured aneurysm
 - Maximal frequency of rebleeding is in 1st day (4% 13.6%)
 - More than 1/3 occurring within 3 hrs
 - ¹⁄₂ within 6hrs
 - The subsequent rebleeding risks after 1st day, 1.5% daily for 13 days
 - 15-20% rebleed within 14d
 - 50% rebleed within 6 months
 - Mortality rate : 2% / yr

Vasospasm

- Most commonly seen following some cases of aneurysmal SAH
- May also follow other intracranial hemorrhage
 - IVH from AVM
 - SAH of other etiology
 - Head trauma
 - Brain surgery
 - Lumbar puncture
 - Hypothalamic injury
 - infection

Definition

- Delay cerebral ischemia (DCI)
 - Delayed development of a neurological deficit
 - Decline of GCS of at least 2 points
 - Cerebral infarction unrelated to aneurysm treatment
- Early brain injury (EBI)
 - Direct mechanical damage from SAH
 - Transient increase in ICP
 - Reduction of CBF
 - Apoptosis and edema formation

Clinical vasospasm

- Sometimes referred to as delayed ischemic neurological deficit (DIND)
- Confusion or decreased level of consciousness sometime with focal neurological deficits

Table 75.1 Correlation of DIND with Hunt and Hess grade

Hunt and Hess grade	% DIND (clinical vasospasm)
1	22%
2	33%
3	52%
4	53%
5	74%

Diagnosis of vasospasm

- Ancillary tests for vasospasm
- TCD
- CTA
- MRA
- cEEG
- Alternation in cerebral blood flow

Transcranial doppler (TCD)

- Detectable changes may precede clinical symptoms by up to 24-48 hrs
- Lindegaard ratio : MCA / ICA

e 75.5 Interpretation of transcranial Doppler for vasospasm

n MCA velocity (cm/sec)	MCA:ICA (Lindegaard) ratio	Interpretation
0	<3	normal
-200ª	3-6	mild vasospas m ^a
0	>6	severe vasospasm

Treatment for vasospasm

- Prevention of vasospasm
- No effective prophylactic intervention for CVS
 - Early aneurysm treatment does not prevent CVS, but facilitates treatment for CVS by eliminating risks of rebleeding

Vasospasm treatment options - I

- Direct pharmacological arterial dilatation
 - Smooth muscle relaxants
 - Calcium channel blockers
 - Endothelin receptor antagonists
 - Ryanodine receptor blocker
 - Magnesium
 - Sympatholytics
 - Intra-arterial papaverine
 - alphalCAM-1 inhibition
- Direct mechanical arterial dilatation

Vasospasm treatment options - II

- Indirect arterial dilatation
- Removal of potential vasospasmogenic agents
- Protection of the CNS from ischemic injury
- Improvement of the rheologic properties of intravascular blood
- Statins
- Extracranial-intracranial bypass

Treatment options for aneurysms

- Optimal treatment for aneurysm depends on
 - age and condition of the patient
 - the anatomy of aneurysm and associated vasculature.
 - The ability of the surgeon
 - Availability of the endovascular treatment options
 - Weighed against the natural history of the condition
 - Treatment of the aneurysm facilitates treatment of vasospasm

Treatment decisions Coiling vs. Clipping

Table 76.1 Summary of rebleeding, complete occlusion, and retreatment rates as a function of treatment modality (clip vs. coil) for the 4 randomized controlled trials

	Rebleed ^a : Clip	Rebleed ^a : Coil	Complete occlusion: Clip	Complete occlusion: Coil	Retreat- ment: Clip	Retreat- ment: Coil
Finnish	0%	0%	73.7% ^b	50% ^b	7%	23.1%
ISAT	1.0%	2.6%	82%	66%	4.2%	15.1%
ISAT5 ^c	0.3%*	0.9%*	n/a	n/a		
ISAT10 ^c	0.4%	1.6%	n/a	n/a		
Chinese	3.3%	3.2%	83.7%*	64.9%*		
BRAT	0.8% ^e	0%	85%	58%	4.5%*	10.6%*
BRAT3 ^d	0%	0%	87%	52%	5%*	13%*

* statistically significant difference (p<0.05)

^aRebleeding from target aneurysm after first procedure

^bResult achieved after treatment during first hospitalization

^cISAT₅ & ISAT₁₀ refer to the 5- and 10-year follow-up studies. Rebleeding results for these studies refer to recurrent SAH after the 1st year of follow-up

^dBRAT₃ refers to the 3-year follow-up study. BRAT & BRAT₃ are "as-treated" results "Both rebleeding events occurred during the initial hospitalization

ISAT

- The largest trial
- Result :
- Absolute reduction of risk of having poor outcome by 7% with coiling compared to clipping
- Rebleeding in the first year was higher for coiling than clipping
 - Not statistically significant

BRAT

- At 3 years, there was no significant difference in poor outcome between coiling and clipping
- Aneurysm obliteration rate, rate of aneurysm recurrence and rate of retreatment were significantly better in group treated with clipping

Vasospasm in different treatment

- One meta-analysis suggested a trend toward less symptomatic vasospasm after coiling compared to clipping
- In the Chinese RCT, symptomatic vasospasm and consequent cerebral infarction was more common in clipping group
- Li et al found vasospasm more common after clipping

Shunt-dependent hydrocephalus

- One study showed a lower incident of shunt-dependent hydrocephalus in the surgical group
 - Many others have failed to show this relationship
- A suggestion that fenestration of the lamina terminalis at the time of surgery may decrease shunt-dependent chronic hydrocephalus

Factors to consider between clipping and coiling

- Health care environment
- Skill set and experience of the operator
- Anatomy and location of aneurysm
 - Favorable dome/neck ratio vs wide neck aneurysms
 - MCA aneurysms may be difficult to coil
 - Basilar apex : favor coiling
 - Associated IPH/SDH : favor surgery for clot evacuation
 - Symptoms due to mass effect : clipping better
- Patient age
- Clinical status / comorbidities

Aneurysm treatment decisions

Practice guideline: Aneurysm treatment decisions

Level C⁹²: Treatment decisions should be multidisciplinary (made by experienced cerebrovascular and endovascular specialists) based on characteristics of the patient and aneurysm.

Level C⁹²: Microsurgical clipping may receive increased consideration in patients presenting with large (>50 ml) intraparenchymal hematomas and middle cerebral artery aneurysms (> Fig. 74.1). Level C⁹²: Endovascular coiling may receive increased consideration in the elderly (> 70 yo), in

those presenting with poor-grade WENS classification (IV/V) aSAH, and in those with a neurysms of the basilar apex

Level B⁹²: For patients with ruptured aneurysms judged to be technically amenable to both endovascular coiling and neurosurgical clipping, endovascular coiling should be considered

Timing of aneurysm surgery

- Early surgery : $\leq 48 96$ hrs
- Late surgery : usually $\geq 10 14$ days
- Ultra-early : < 24hrs after SAH

Factors favoring early surgery

- Good medical condition
- Good neurological condition (H&H grade \leq 3)
- Large amounts of SAH
- Large clots with mass effect associated with SAH
- Early rebleeding
- Indications of imminent rebleeding

Factors favoring late surgery

- Poor medical condition or neurological condition
 - H&H grade ≥ 4
- Aneurysms difficult to clip
- Significant brain edema seen on CT
- Presence of active vasospasm