ICH

Introduction

- Intracerebral hemorrhage (ICH) is a hemorrhage within the brain parenchyma
- Commonly referred to as "Hypertensive hemorrhage" in the past
- Second most common form of stroke, but most deadly

Epidemiology

- Incidence : second most common form of stroke (15 30%)
 - 12 15 cases per 100000 /yr
- Recent studies show approximately twice the incidence of SAH
- Incidence increase in age ≥ 55
- Over 20% of patient deteriorate by \geq 2 between first EMS and then E/R
- 15 23% deteriorates further within the first few hours in the hospital

Risk factors

- Age : the incidence increase significantly after age 55
 - Doubles with each decades of age until age > 80, where incidence is 25 times that during previous decades
- Gender : more common in men
- Race : Blacks more than whites, may also be higher in Asians
- Previous stroke : increase risk to 23:1

Risk factor II

- Alcohol consumption : recent use and chronic use
- Cigarette smoking : increase the risks of SAH and ischemic infarction but probably does not increase the risks of ICH
- Street drugs : cocaine, amphetamines, phencyclidine
- Liver dysfunction : hemostasis may be impaired on the basis of thrombocytopenia, reduced coagulation factors and hyperfibrinolysis

Alcohol consumption

e 84.1 Relative risk of ICH with EtOH consumption

od prior to ICH	Amount ^a (g EtOH)	Relative risk	
nours	41-120	4.6	
	> 120	11.3	
eek	1-150	2.0	
	151-300	4.3	
	> 300	6.5	
tandard drink = 12 a FtO	4		

tandard drink=12g EtOH

Location of ICH

- Common arterial feeders of ICH
- Lenticulostriates : the source of putaminal hemorrhage
- Thalamoperforators
- Paramedian branches of BA
- Intraventricular hemorrhages : occurs in 45% of sICH and is an independent risk factors for worse outcome

Common sites for ICH

ble 84.2 Common sites for ICH (modified 15)

	Location
)	striate body (basal ganglia); putamen most common; also includes: lenticular nucleus, internal capsule, globus pallidus
ō	thalamus
)–15	pons (≈ 90% of these are genuinely hypertensive)
þ	cerebellum
0–20	cerebral white matter
-6	brainstem

Lobar hemorrhage

- Account for 10 -32% of all nontraumatic ICHs
- Are more likely to be associated with structural abnormalities then deep hemorrhages
- Have a more benign outcome than ganglionic-thalamic ICHs

Etiology of lobar ICHs

- Extension of a deep hemorrhage
- Cerebral amyloid angiopathy
 - The most common causes of lobar ICH in elderly normotensive pts
- Trauma
- Hemorrhagic transformation of an ischemic infarct
- Hemorrhagic tumor
- Cerebrovascular malformation
- Rupture of an aneurysm
- Idiopathic

Internal capsule hemorrhages - Etiologies

- Hypertension
 - Acute hypertension : as may occur in eclampsia
 - Chronic hypertension : degenerative changes within blood vessels
- Associated with acutely increased CBF, esp. areas previously rendered ischemic
 - Following carotid endarterectomy
 - Following repair of congenital heart defects in children
 - Previous stroke
 - Migraine
 - Following surgery to remove an AVM

Etiologies II

- Vascular anomalies
 - AVM
 - Aneurysm rupture
 - Venous angioma rupture
- Arteriopathies
 - Amyloid angiopathy
 - Fibrinoid necrosis
 - Lipohyalinosis
 - Cerebral arteritis
- Brain tumor
- Coagulation or clotting disorders

Etiologies III

- CNS infection
- Venous or dural sinus thrombosis
- Drug related
- Posttraumatic
- Pregnancy related
- Postoperative
- Idiopathic

Cerebellar hemorrhage etiologies

- Etiologies are similar to ICH of any location, however, some nuances
- Hypertension is a factor in up to 2/3 of cerebellar hemorrhages
- AVM is a consideration, aneurysm is very rare
- May be related to recent previous spinal or supratentorial surgery

Cerebral amyloid angiopathy

- Pathological deposition of beta amyloid protein within the media of sma meningeal and cortical vessels without evidence of systemic amyloidosi
- Should be suspected in patient with recurrent hemorrhages that are lob in location
- Incidence increases with age : CAA present in about 50% of those > 70 y

able 84.3 Criteria for the diag	able 84.3 Criteria for the diagnosis of cerebral amyloid angiopathy (CAA) ⁷³
Diagnosis	Criteria
definite CAA	full postmortem exam showing all 3 of the following: a) lobar, cortical, or corticosubcortical hemorrhage b) severe CAA c) absence of another diagnostic lesion
orobable CAA with support- ng pathological evidence	clinical data & pathological tissue showing all 3 of the following: a) lobar, cortical, or corticosubcortical hemorrhage b) some degree of vascular amyloid deposition in specimen c) absence of another diagnostic lesion
probable CAA	 clinical data and MRI findings showing all 3 of the following: a) age ≥ 60 yrs b) multiple hemorrhages restricted to the lobar, cortical, or corticosubcortical region c) absence of another cause of hemorrhage^a
oossible CAA	 clinical data and MRI findings: a) age ≥ 60 yrs b) single lobar, cortical, or corticosubcortical hemorrhage without another causea, or multiple hemorrhages with a possible but not a definite causea, or with some hemorrhages in an atypical location (e.g. brainstem)
e.g. excessive anticoagulation (INR > 3.0), h malformation, vasculitis, or blood dyscrasia	le.g. excessive anticoagulation (INR > 3.0), head trauma, ischemic stroke, CNS tumor, cerebrovascular nalformation, vasculitis, or blood dyscrasia

Hemorrhagic brain tumors

- Malignant tumor most commonly associated with ICH
 - Glioblastom
 - Lymphoma
 - Metastatic tumors
 - Melanoma ≈ 40% hemorrhage
 - Choriocarcinoma ≈ 60% hemorrhage
 - Renal cell carcinoma
 - Bronchogenic carcinoma ≈ 9% hemorrahge
- Malignant tumors that hemorrhage less commonly
 - Medulloblastom
 - Gliomas

- Some benign brain tumors associated with ICH
 - Meningiomas : intratumoral, subdural, and nearby parenchymal hemorrahge
 - Pituitary adenoma
 - Oligodendroglioma
 - Hemangioblastom
 - Vestibular schwannoma
 - Cerebellar astrocytoma

Anticoagulation preceding ICH

- 10% of patient on warfarin develop a significant bleeding complication per year, including ICH (65% mortality)
- The risks of ICH in patients treated with warfarin for a-fib 0-0.3%/year
 - 1.8%/year in elderly group
- The risk of hemorrhagic complication was increased with the length and also the variability of the PT, and during the first 3 month of anticoagulation.

Clinical

- The neurologic deficit with ICH is characterized by a smooth progressive onset over minutes to hours
 - Unlike embolic/ischemic stroke where deficit is maximal at onset
- Severe headache, vomiting and alternations in level of consciousness may be more common

Prodrome

- TIA-like symptoms may precede lobar hemorrhages in pts with CAA
 - Up to \approx 50% for whom a complete history is obtainable
- Unlike typical TIAs, these usually consist of numbress, tingling, or weakness that gradually spreads in a manner reminiscent of a Jacksonian-march and my spill-over vascular territories

Putaminal ICH

- The most common site for ICH
- Smooth gradual deterioration in 62%
 - Maximal deficit at onset in 30%
- Never fluctuating
- Contralateral hemiparesis, may progress to hemiplegia or even coma
- H/A in 14% of onset, no H/A at any time in72%

Thalamic hemorrhage

- Classically contralateral hemisensory loss
- Also hemiparesis when the internal capsule in involved
- Extension into upper brainstem
 - Vertical gaze palsy, retraction nystagmus, skew deviation, loss of convergence, ptosis, miosis, anisocoria +- unreactive pupils.
- H/A in 20-40%

Cerebellar hemorrhage

- Symptoms of increased ICP due to hydrocephalus
 - Compression of the 4th ventricle
 - Extension of the hemorrhage into the ventricle system
- Direct compression of brainstem
 - Facial palsy : due to pressure on the facial colliculus
 - Classically become comatose without first having hemiparesis, unlike many supratentorial etiologies

Lobar hemorrhage

- Syndromes associated with hemorrhage in the 4 cerebral lobes
- Frontal lobe : frontal headache with contralateral hemiparesis usually in the arm with mild leg and facial weakness
- Parietal lobe : contralateral hemisensory deficit and mild hemiparesis
- Occipital lobe : ipsilateral eye pain and contralateral homonymous hemianopsia
- Temporal lobe : fluent dysphasia with poor auditory comprehension but relatively good repetition

Delay deterioration

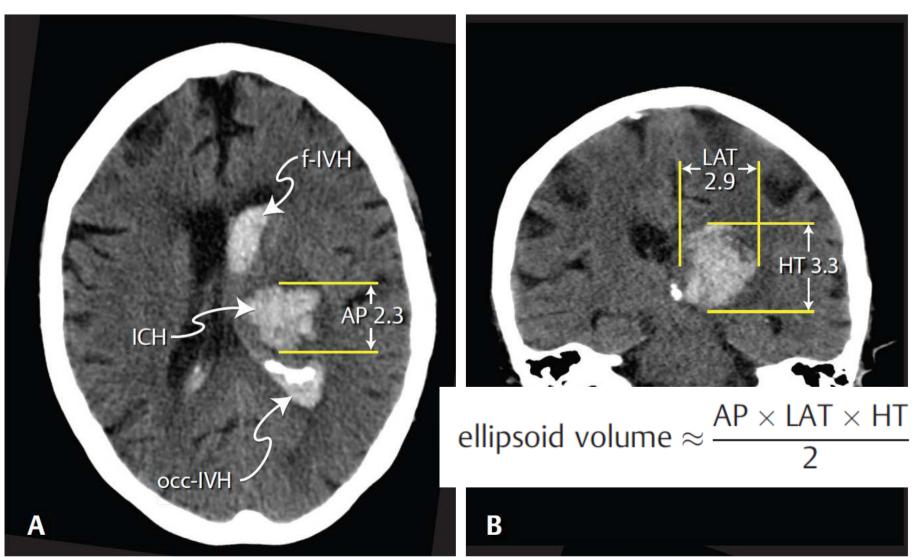
- Usually due to any combination of the following :
- Rebleeding
- Edema
- Hydrocephalus
- Seizure
- Increased ICP

Early rebleeding

- Rebleeding : more common in basal ganglion hemorrhages
- The incidence of hematoma enlargement
 - 33-38% in 1-3 hrs
 - 16% in 3-6 hrs
 - 14% between 24hrs of onset
- Risks of early bleeding
 - Spot sign on CTA

Evaluation

Practice guideline: Initial diagnosis & assessment in spontaneous ICH


Level I⁵:

- obtain a baseline severity score
- rapid imaging with noncontrast CT (or MRI) to differentiate from ischemic stroke

Level II⁵:

- consider CTA & contrast CT to identify patients at risk for hematoma expansion
- consider CT venogram, contrast CT, contrast MRI, MRA and/or catheter angiogram as appropriate when clinical or imaging suspicion of underlying abnormality (vascular or neoplastic)

Volume measurements on CT scan

MRI

Table 84.4 Variation of brain MRI signal characteristics of intraparenchymal blood over time (modified¹⁰⁹)

Phase	Approximate time after onset	Hemoglobin (Hgb) state	T1 MRI ^a	T2 MRI ^a	Mnemonic ^b
hyperacute	0–6 hrs ^c	oxy-Hgb (intracellular)	l	B (slight ↑)	I be
acute	6-72 hrs	deoxy-Hgb (intracellular)	I (or slight ↑)	D	iddy
early subacute	3–7 d	met-Hgb (intracellular)	В	D	biddy
late subacute	7–14 d	met-Hgb (extracellular ^d)	В	В	baby
chronic	>2 weeks ^e	hemosiderin (intracellular)	D (slight ↑)	D	doodoo

^aB = bright (hyperintense compared to brain), D = dark (hypointense), I = isointense ^bsilly/easy to remember words made from the I, B or D in the preceding columns ^csome authors consider up to about 24 hrs as hyperacute ^dwhen RBCs lyse, the Hgb becomes extracellular ^ethe center of the clot may be isointense on T1 and slightly hyperintense on T2

ICH score

Table 84.5 ICH Score¹¹³

Feature	Finding	Points
GCS (Glasgow coma scale score; ► Table 18.1)	3-4	2
	5–12	1
	13–15	0
Agea	≥ 80 years	1
	<80	0
Location	infratentorial	1
	supratentorial	0
ICH volume	≥ 30 cc	1
see Eq (84.1)	<30 cc	0
Intraventricular blood	yes	1
	no	0
"ICH Score" = Total Points		0-6
apossible biss since treatment desisions in elderly patier	to may have differed from younger	pationts

^apossible bias since treatment decisions in elderly patients may have differed from younger patients

Mortality based on ICH score

e 84.6 Mortality based on ICH Score

Score ^a	30-day mortality	
	0%	(26 pts)
	13%	(32 pts)
	26%	(27 pts)
	72%	(32 pts)
	97%	(29 pts)
	100%	(6 pts)
	? 100% ^b	(0 pts)

n ► Table 84.5

pt. in the study had a score of 6, but "it is expected this would be associated with high rate of mortality

Nonsurgical management

- Hypertension may contribute to further bleeding
- Maintain normothermia
- Seizures are treated with appropriate AEDs
- Hemostatic issues
- Treat intracranial hypertension
- EVD for hydrocephalus
- Swallowing

Blood pressure management

Practice guideline: Blood pressure management in patients with ICH

- 1. patients with SBP 150–200 mm Hg and no contraindication to acute BP management: lowering SBP to 140^a is safe (Level I⁵) and improves functional outcome (Level II⁵)
- patients with SBP > 200 mm Hg: it is reasonable to consider aggressive reduction of BP with continuous IV infusion and monitoring of BP (Level II⁵)

^a since the publication of these guidelines,⁵ the INTERACT-II¹¹⁶ & ATACH-2¹¹⁷ trials have shown that rebleeding occurs despite blood pressure control, and that reducing SBP < 140 mm Hg is associated with increased incidence of adverse renal events¹¹⁷ probably from hypoperfusion

Hemostasis

- 1. for severe coagulation factor deficiency or severe thrombocytopenia: replace deficient factors or administer platelets (Level I⁵)
- 2. patients on vitamin K antagonists (VKA) (e.g. warfarin) with elevated INR:
 - a) withhold VKA (Level I⁵)
 - b) replace vitamin K-dependent clotting factors (Level I⁵)
 - c) correct the INR (Level I⁵)
 - consider prothrombin complex concentrate (PCC) (p. 181) over FFP because PCC may have fewer complications, and corrects INR faster & closer to normal (Level II⁵)
 - x not recommended: rFVIIa (doesn't replace all clotting factors & may not restore clotting in vivo despite normalization of INR, & thromboembolic complications also occur) (Level III⁵)
 - d) administer IV vitamin K (Level I⁵)
- patients on dabigatran (Pradaxa®)^a, rivaroxaban (Xarelto®)^a or apixaban (Eliquis®)^a: consider treatment with activated PCC factor eight bypassing activity (FEIBA), other PCCs or vFVIIa (Level II⁵); consider dialysis for dabigatran (Level II⁵)
- 4. patients on heparin: consider reversal with protamine sulfate (Level II⁵)
- 5. patients on antiplatelet drugs: platelet transfusion is of uncertain benefit (Level II⁵)
- 6. × not recommended: rFVIIa in unselected ICH patients (no clear clinical benefit) (Level III⁵)

Surgical treatment

- Cerebellar hemorrhage with neurologic deterioration, or brainstem compression and/or obstructive hydrocephalus
- Surgical removal of the clot should be done ASAP
- Supratentorial ICH
 - Early ICH evacuation is not clearly superior to evacuation when the patient deteriorates
 - Deteriorating pts : ICH evaluation may be considered as life-saving
 - Pts in coma, or large ICH with sig. midline shift, or refractory IICP, DC with or without ICH evacuation may reduce mortality

Indications for surgery

- One randomized prospective study found lower mortality for patients with GCS 7-10 treated surgically, however all survivor were severely disabled
- The decision to operate therefore must be individualized based on pt's neurologic condition, size and location of hematoma, age

Management of cerebellar hemorrhage

- Pts with GCS \geq 14 and hematoma < 4cm, treat conservatively
- Pts with GCS \leq 13 or hematoma \geq 4cm or with hydrocephalus or brainstem compression : surgical evacuation ASAP
- Pts with absent brainstem reflexes and flaccid quadriplegia : intensive therapy is not indicated

Outcome

- Thalamic hemorrhage tend to destroy the internal capsule are more likely to produce hemiplegia than hemorrhages lateral to the IC that compress but do not disrupt the IC
- Mortality : overall 30-day mortality rate is ≈ 44% for ICH
 - Similar to SAH (≈ 46%)
- Patients with lobar ICH tend to fare better than deep ICH with only ≈ % mortality in one study