Introduction of basic hearing test

楊昆霖醫師/楊昭輝醫師

The Ear and Hearing

Sound and hearing

Sound stimulation

Audiometry

Audiometry

Subjective test – verbal or physical response

Tests all parts of the ear

Pure Tone

- Air conduction
- Bone conduction

Speech testing

Generate an Audiogram

Basic Pure-tone Audiometry

Measures hearing sensitivity

- Air conduction → measures sensitivity of entire pathway of auditory system, including outer, middle, and inner-ear.
- Bone conduction → "by-passes" outer and middle-ear to measure sensitivity of inner ear directly.
- Determines type and severity of hearing loss

Results are used to generate the audiogram

Conducting a Test

AIR CONDUCTION

BONE CONDUCTION

- Place headset centered over ear canals and band snug on top of head
- Red on Right ear, Blue on Left ear

- Place bone oscillator on mastoid bone with other end of headband on opposite temple.
- Make sure oscillator does NOT touch the ear.
- Bone conduction stimulates **BOTH** ears.

Finding a Pure-Tone Threshold

- Start at 1000Hz at 30dB (50dB) in better ear (or right ear) and present the tone.
- Follow **"Down 10, Up 5"** rule:
 - If patient responds, decrease 10dB
 - If patient does NOT respond, increase 5dB
 - Follow this pattern until 3 responses are obtained at the same level on the ascending run.
- Repeat this procedure for all test frequencies:
 2000, 4000, 8000, 500, 250Hz.

Audiogram

- Mark Air and Bone thresholds on the chart
 - \circ O Right ear Δ
 - N Left ear
 - < Right Bone ⊏
 - → Left Bone □

 Behavioral response - cooperation of the patient is important

Severity of hearing loss

 Hearing Loss is described as a range

 Ranges from Mild through Profound

Types of Hearing Loss

- Conductive Hearing loss-Primarily caused by damage to the outer or middle ear
- Bone conduction is within the normal range, Air Conduction is not

Types of Hearing Loss

Sensorineural-

Damage to the Cochlea or beyond

Types of Hearing Loss

Mixed Hearing Loss

 Has both conductive and sensorineural components

Masking

• Why - To prevent the non-testing ear from participating the test (cross-over)

Interaural attenuation - reduction in sound when it crosses from one ear to the other

Masking

When

- Air conduction 40dB or more difference between air-conduction threshold of the bad ear and bone-conduction thresholds of the good ear
- Bone conduction air-bone gap of test ear more than 10dB

How

 By presentation of a masking noise to the ipsilateral ear (Narrow-band noises in PTA)

Speech audiometry

Speech detection threshold, SDT

 The intensity level at which a listener can barely discern the presence of a speech signal 50% of the time

Speech reception threshold, SRT

- Requires the listener to repeat the word
- SRT is usually 8 to 9 dB higher than the SDT

Speech discrimination score, SDS

 Regarding the listener's ability to recognize speech under ideal listening conditions

Speech and the Audiogram

 Speech sounds in the English language can be plotted on the audiogram (speech-banana)

 This gives some insight into what sounds the patient is missing in everyday conversation.

Audiogram of Familiar Sounds

Adapted Item American Academy of Indiving, wercandering organit Northern, 34 Dovers, 34 (2010). Analogram of Samilar ownits: and Dag, 37 (3) Long, A (1975). Annal Vabilitation.

Summary--Audiometry

- Subjective evaluation to diagnose hearing loss
- Evaluates the entire auditory system
- Provides information on the most appropriate "next step"
 - Further diagnostic testing
 - Medical intervention
 - Hearing aids

Tympanometry

THE MIDDLE EAR

Tympanometry

Objective measure of the middle-ear system

"Not a hearing test"

 Graphic representation of ear compliance in relation to the pressurization of the ear canal

Tympanometry

• A probe is inserted in the ear canal that contains a **loudspeaker**, a **microphone**, and a **pump**.

- A tone (226Hz) is delivered into the ear while the pressure is changed within the sealed canal.
- Measurement taken at the probe plots the flexibility of the ear drum and the ossicles.
- Plot is displayed in a graph called the tympanogram

Refer: https://dnbhelp.wordpress.com/otology/

Tympanogram tells us

- Middle-ear pressure (normally equal to atmospheric pressure)
- "Compliance" of middle-ear system (eardrum movement)

Tympanogram

高雄長庚醫院耳鼻喉部

Types of Tympanograms

Type A

Normal middle ear pressure

Normal eardrum movement

Normal ear canal volume

Example:

➢Normal middle ear

Figure 5.2 Normal tympanic membrane (Right)

Type As

- Reduced Compliance
- Normal Middle-ear pressure
- Normal ear canal volume

- Example:
- ➢ Fixation of ossicles
- Scarring on TM

Figure 5.24 Tympanosclermin

Type Ad

Increased compliance

Normal middle-ear pressure

Normal ear canal volume

Example:

Discontinuity of ossicles

Type D

Increased compliance

Normal middle-ear pressure

Normal ear canal volume

Example:

Scarred eardrums or with normal, hypermobile eardrums.

Type B (normal volume)

igure 5.8 Acute otitis media 1

Figure 5.17 Serous otitis media

- No compliance or pressure peak indicated
- Normal ear canal volume

Example:

➢Middle-ear fluid

Type B (increased volume)

- No compliance or pressure peak indicated
- Increased ear canal volume

Example:

- Perforated TM
- Patent P.E. Tubes

Figure 5.19 wnrilation tube

Figure 5.34 Perforation

Type B (decreased volume)

• "Flat"

- No compliance or pressure peak indicated
- Decreased ear canal volume

Example:

- Occluding Wax
- Probe up against canal wall

Figure 4.10 Earwax

Type C

 Excessive negative middle-ear pressure

Normal or reduced compliance

Normal ear canal volume

Example:

Eustachian tube dysfunction, initiation or resolution of middle-ear fluid

Advantages of Tympanometry

Objective measure of middle-ear function

Fast & Easy to perform

Requires no response from the patient

Can be performed on all ages, infant to adult

Why Use Tympanometry

 Objective documentation of reduced eardrum movement (ie: fluid, wax, etc.)

- Monitor chronic middle-ear fluid
- Confirm tympanic membrane perforation
- Monitor Eustachian tube function
- Correlate with audiogram to develop a more complete picture of hearing

Summary

Review

References

- ●聽語中心教學
- Paul R. Kileny and Teresa A. Zwolan ,Cummings Otolaryngology, 133, 2051-2070.e1
- Roeser, R.J., Valente, M., Hosford-Dunn, H. (2000). <u>Audiology Diagnosis</u>, Thieme, New York.
- Google "pictures ear drum"

Thanks for your listening