LightGBM: A Highly Efficient Gradient Boosting
Decision Tree

GuolinKe,Qi Meng,Thomas Finley,
Taifeng Wang, Wei Chen,Weidong Ma,Qiwei Ye,Tie-Yan Liu
Microsoft Research
Peking University
Microsoft Redmond

Introduction

Gradient boosting decision tree (GBDT) is a widely-used machine

learning algorithm, due to its efficiency, accuracy, and interpretability.
GBDT achieves state-of-the-art performances in many machine learning tasks, such as
multi-class classification, click prediction, and learning to rank. In recent years, with the
emergence of big data (in terms of both the number of features and the number of
instances), GBDT is facing new challenges, especially in the tradeoff between accuracy and
efficiency. Conventional implementations of GBDT need to, for every feature, scan all the
data instances to estimate the information gain of all the possible split points. Therefore,
their computational complexities will be proportional to both the number of features and the

number of instances. This makes these implementations very time
consuming when handling big data.

In this paper, we propose two novel techniques:

Gradient-based One-Side Sampling (GOSS).

While there is no native weight for data instance in GBDT, we notice that data instances with
different gradients play different roles in the computation of information gain. In particular,
according to the definition of information gain, those instances with larger gradients will
contribute more to the information gain. Therefore, when down sampling the data instances, in
order to retain the accuracy of information gain estimation, we should better keep those
instances with large gradients, and only randomly drop those instances with small
gradients.

Exclusive Feature Bundling (EFB).

Usually in real applications, although there are a large number of features, the feature space
IS quite sparse, which provides us a possibility of designing a nearly lossless approach to
reduce the number of effective features. Specifically, in a sparse feature space, many features
are exclusive, i.e., they rarely take nonzero values simultaneously. We can safely bundle
such exclusive features. To this end, we design an efficient algorithm by reducing the
optimal bundling problem to a graph coloring problem, and solving it by a greedy algorithm
with a constant approximation ratio.

Gradient-based One-Side Sampling (GOSS):

Algorithm 1: Histogram-based Algorithm

Input: /: training data, d: max depth

Input: m: feature dimension

nodeSet < {0} > tree nodes in current level

rowSet < {{0,1,2,...}} > data indices in tree nodes

fori = 1toddo

for node in nodeSet do

usedRows < rowSet[node]

for k = 1to m do

H < new Histogram()

> Build histogram

for j in usedRows do
bin < I.f[k][j].bin

L H|bin].y <— H|[bin].y + Ly[j]

H{(bin].n <~ H[bin].n + 1

Find the best split on histogram H.

Update rowSet and nodeSet according to the best
split points.

As shown in Alg. 1, the histogram-based
algorithm finds the best split points based on the
feature histograms.

It costs O(#data x #feature) for histogram
building and O(#bin x #feature) for split point
finding. Since #bin is usually much smaller than
#data, histogram building will dominate the
computational complexity.

Algorithm 2: Gradient-based One-Side Sampling

Input: /: training data, d: iterations

Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner

topN < a x len(]), ranlélN < b x len(])

fori = 1to ddo

preds <— models.predict(/)

g < loss(I, preds), w « {1,1,...}

sorted < GetSortedIndices(abs(g))

topSet < sorted|[1:topN]

randSet «<— RandomPick(sorted[topN:len(I)],
randN)

usedSet «+— topSet + randSet

w[randSet] x = fact > Assign weight fact to the
small gradient data.

newModel <— L(/[usedSet], — g[usedSet],
w|usedSet])

models.append(newModel)

°

o m) =
,/6

Level-wise tree growth

LightGBM :
@ ® &
o‘oq‘. om) ¢ o .
o0 ® o
o0

Leaf-wise tree growth

GBDT uses decision trees to learn a function from the input space X'® to the gradient space G.
Suppose that we have a training set with n i.i.d. instances {z,,--- ,x, }, where each z; is a vector
with dimension s in space A'®. In each iteration of gradient boosting, the negative gradients of the
loss function with respect to the output of the model are denoted as {g;, - - , g, }. The decision tree
model splits each node at the most informative feature (with the largest information gain). For GBDT,
the information gain is usually measured by the variance after splitting, which is defined as below.

Definition 3.1 Let O be the training dataset on a fixed node of the decision tree. The variance gain
of splitting feature j at point d for this node is defined as

v (d) 1 ((E{;x:ie()w,j <d} gi)z " (Z{xie():aru >d} gi)'z)
jlold) = — - - y
. nj o (d) nl o (d)

no
where no =3 I[zi € O], nj,,(d) = 3" I[zi € O: m,Jgd]andnlo d) =Y I[z; € O: =z > d).

For feature j, the decision tree algorithm selects d; = argmaz,V;(d) and calculates the largest gain
V;i(dj). Then, the data are split according feature j* at point d;« into the left and right child nodes.

In our proposed GOSS method, first, we rank the training instances according to their absolute values
of their gradients in the descending order; second, we keep the top-a x 100% instances with the larger
gradients and get an instance subset A; then, for the remaining set A° consisting (1 — a) x 100%
instances with smaller gradients, we further randomly sample a subset B with size b x | A°|; finally,

we split the instances according to the estimated variance gain V; (d) over the subset A U B.1.e.
p g g J
T= 2 —a 2
’ nj (d) n(d) |

n
where Ay ={z;€ A:2;; <d}, A, ={zi € A: 243 >d},Bi={zi € B: z;; < d},B, = {z;: € B:
xi; > d}, and the coefficient 1 —* is used to normalize the sum of the gradients over B back to the
size of A°.

(1)

Theorem 3.2 We denote the approximation error in GOSS as £(d) = |V;(d) — V;(d)| and gl (d) =

o, E“‘J”(;‘;“ 9] LG (d) = Z”"E”j“(z;]" 9 With probability at least 1 — §, we have

2 1 1 [In1/4
S(d)ﬁca,blnl/ci-max{n D n (d)}+2DCab may (2)

and D = max(g] (d), 3’ (d)).

l—a

where Cqp = 7 maxa, e ac

Gils

We have the following discussions:

1

(1) The asymptotic approximation ratio of GOSS is © (..;l.fn to@ L—) :

If the split is not too unbalanced (i.e., »/(d) > O(vn) and ™*(4) = O(V1)) the approximation
error will be dominated by the second term ot Ineq.(2) which decreases to 0 in O(vn)
with n - . That means when number of data is large, the approximation is quite accurate.

(2) Random sampling is a special case of GOSS with a = 0. In many cases, GOSS could
outperform random sampling, under the condition

("U.,‘i > C"u JPB—a

Exclusive Feature Bundling (EFB).

High-dimensional data are usually very sparse. The sparsity of the feature
space provides us a possibility of designing a nearly lossless approach to reduce
the number of features. Specifically, in a sparse feature space, many features
are mutually exclusive, i.e., they never take nonzero values simultaneously.
We can safely bundle exclusive features into a single feature (which we call
an exclusive feature bundle). By a carefully designed feature scanning algorithm,
we can build the same feature histograms from the feature bundles as those from
individual features. In this way, the complexity of histogram building changes from
O(#data x #feature) to O(#data x #bundle),
while #bundle << #feature.

There are two issues to be addressed.
The first one is to determine which features should be bundled together.
(Greed Bundling)

The second is how to construct the bundle.
(Merge Exclusive Features)

Greed bundling

Theorem 4.1 The problem of partitioning features into a smallest number of exclusive bundles is
NP-hard.

Proof: We will reduce the graph coloring problem [25] to our problem. Since graph coloring problem
is NP-hard, we can then deduce our conclusion.

Given any instance G = (V, E) of the graph coloring problem. We construct an instance of our
problem as follows. Take each row of the incidence matrix of GG as a feature, and get an instance of
our problem with |V| features. It is easy to see that an exclusive bundle of features in our problem
corresponds to a set of vertices with the same color, and vice versa. [

1 0

& feature i

/
T

feature j

Furthermore, we notice that there are usually quite a few features,
although not 100% mutually exclusive, also rarely take nonzero
values simultaneously. If our algorithm can allow a small fraction of
conflicts, we can get an even smaller number of feature bundles and
further improve the computational efficiency.

By simple calculation, random polluting a small fraction of feature
values will affect the training

accuracy by at most O([(1 —~)n]2/3) , where y is the maximal conflict
rate in each bundle. | |

So, if we choose a relatively small y, we will be able to achieve a
good balance between accuracy and efficiency.

Algorithm 3: Greedy Bundling

Input: F': features, K: max conflict count

Construct graph G

searchOrder < G'.sortByDegree()

bundles < {}, bundlesConflict < {}

for 2 in searchOrder do

needNew <— True

for j = 1 to len(bundles) do
cnt <— ConflictCnt(bundles[j],F'[1])
if cnt + bundlesConflict[i] < K then

L bundles|j].add(F'[1]), needNew <« False
break

if needNew then
| Add F[i] as a new bundle to bundles

O_utput: bundles

Algorithm 4: Merge Exclusive Features

Input: numData: number of data
Input: F': One bundle of exclusive features
binRanges < {0}, totalBin < 0
for fin F' do
totalBin 4= f.numBin
binRanges.append(totalBin)

newBin <~ new Bin(numData)
for 2 = 1 to numData do
newBin[i] + 0
for j = 1to len(F') do
\\ if F'[j].bin[i] # O then
| newBin[i] < F'[j].bin[i] + binRanges|j]

Output: new Bin, binRanges

Merge Exclusive Features

For the second issues, we need a good way of merging the features in the
same bundle in order to reduce the corresponding training complexity. The
key is to ensure that the values of the original features can be identified
from the feature bundles. Since the histogram-based algorithm stores
discrete bins instead of continuous values of the features, we can construct a
feature bundle by letting exclusive features reside in different bins. This can
be done by adding offsets to the original values of the features.

feature A

feature B

Merge feature

0 10 20 30

Experiments

Table 1: Datasets used in the experiments.

Name #data | # feature | Description | Task Metric
Allstate 12M 4228 Sparse Binary classification | AUC
Flight Delay 10 M 700 Sparse Binary classification | AUC
LETOR 2M 136 Dense Ranking NDCG [4]
KDDI10 19M 29M Sparse Binary classification | AUC
KDDI2 119M 54M Sparse Binary classification | AUC

Table 2: Overall training time cost comparison. LightGBM is Igb_baseline with GOSS and EFB.
EFB_only is 1gb_baseline with EFB. The values in the table are the average time cost (seconds) for
training one iteration.

xgb_exa | xgb_his | lgb_baseline | EFB_only | LightGBM
Allstate 10.85 2.63 6.07 0.71 0.28
Flight Delay 5.94 1.05 1.39 0.27 0.22
LETOR 5.55 0.63 0.49 0.46 0.31
KDDI10 108.27 OOM 39.85 6.33 2.85
KDDI12 191.99 OOM 168.26 20.23 12.67

Table 3: Overall accuracy comparison on test datasets. Use AUC for classification task and
NDCG@ 10 for ranking task. SGB is Igb_baseline with Stochastic Gradient Boosting, and its
sampling ratio is the same as LightGBM.

xgb_exa | xgb_his | Igb_baseline SGB LightGBM
Allstate 0.6070 | 0.6089 0.6093 0.6064 + 7e-4 | 0.6093 + 9e-5
Flight Delay | 0.7601 0.7840 0.7847 0.7780 + 8e-4 | 0.7846 + 4e-5
LETOR 0.4977 | 0.4982 0.5277 0.5239 + 6e-4 | 0.5275 + Se-4
KDDI10 0.7796 OOM 0.78735 0.7759 + 3e-4 | 0.78732 + 1e-4
KDDI2 0.7029 OOM 0.7049 0.6989 + 8e-4 | 0.7051 + Se-5

AUC
0.73 0.74 0.75 0.76 0.77 0.78 0.79

peeese® - -
gone? - -

200

400

—— LightGBM
-~~~ |Igb_baseline
...... xgb—his
—-= xgb_exa
600 800 1000
Time(s)

Figure 1: Time-AUC curve on Flight Delay.

NDCG@10
0.40 0.42 0.44 0.46 0.48 0.50 0.52

o
-

........

1

-
. —

=" LightGBM
2 st --~ |gb_baseline
/ xgb_his

—-=— xgb_exa

\

\o

=

50 100 150 200 250 300 350 400
Time(s)

Figure 2: Time-NDCG curve on LETOR.

