
LightGBM: A Highly Efficient Gradient Boosting

Decision Tree

GuolinKe,Qi Meng,Thomas Finley,

Taifeng Wang, Wei Chen,Weidong Ma,Qiwei Ye,Tie-Yan Liu

Microsoft Research

Peking University

Microsoft Redmond

Introduction

Gradient boosting decision tree (GBDT) is a widely-used machine

learning algorithm, due to its efficiency, accuracy, and interpretability.
GBDT achieves state-of-the-art performances in many machine learning tasks, such as

multi-class classification, click prediction, and learning to rank. In recent years, with the

emergence of big data (in terms of both the number of features and the number of

instances), GBDT is facing new challenges, especially in the tradeoff between accuracy and

efficiency. Conventional implementations of GBDT need to, for every feature, scan all the

data instances to estimate the information gain of all the possible split points. Therefore,

their computational complexities will be proportional to both the number of features and the

number of instances. This makes these implementations very time

consuming when handling big data.

In this paper, we propose two novel techniques:

Gradient-based One-Side Sampling (GOSS).
While there is no native weight for data instance in GBDT, we notice that data instances with

different gradients play different roles in the computation of information gain. In particular,

according to the definition of information gain, those instances with larger gradients will

contribute more to the information gain. Therefore, when down sampling the data instances, in

order to retain the accuracy of information gain estimation, we should better keep those

instances with large gradients, and only randomly drop those instances with small

gradients.

Exclusive Feature Bundling (EFB).
Usually in real applications, although there are a large number of features, the feature space

is quite sparse, which provides us a possibility of designing a nearly lossless approach to

reduce the number of effective features. Specifically, in a sparse feature space, many features

are exclusive, i.e., they rarely take nonzero values simultaneously. We can safely bundle

such exclusive features. To this end, we design an efficient algorithm by reducing the

optimal bundling problem to a graph coloring problem, and solving it by a greedy algorithm

with a constant approximation ratio.

As shown in Alg. 1, the histogram-based

algorithm finds the best split points based on the

feature histograms.

It costs O(#data × #feature) for histogram

building and O(#bin × #feature) for split point

finding. Since #bin is usually much smaller than

#data, histogram building will dominate the

computational complexity.

Gradient-based One-Side Sampling (GOSS):

LightGBM :

High-dimensional data are usually very sparse. The sparsity of the feature

space provides us a possibility of designing a nearly lossless approach to reduce

the number of features. Specifically, in a sparse feature space, many features

are mutually exclusive, i.e., they never take nonzero values simultaneously.

We can safely bundle exclusive features into a single feature (which we call

an exclusive feature bundle). By a carefully designed feature scanning algorithm,

we can build the same feature histograms from the feature bundles as those from

individual features. In this way, the complexity of histogram building changes from

O(#data × #feature) to O(#data × #bundle),

while #bundle << #feature.

There are two issues to be addressed.

The first one is to determine which features should be bundled together.

(Greed Bundling)

The second is how to construct the bundle.

(Merge Exclusive Features)

Exclusive Feature Bundling (EFB).

Greed bundling

feature i

feature j

feature1 feature2

0 0

1 0

1 1 NOT exclusive

Furthermore, we notice that there are usually quite a few features,

although not 100% mutually exclusive, also rarely take nonzero

values simultaneously. If our algorithm can allow a small fraction of

conflicts, we can get an even smaller number of feature bundles and

further improve the computational efficiency.

By simple calculation, random polluting a small fraction of feature

values will affect the training

accuracy by at most , where γ is the maximal conflict

rate in each bundle.

So, if we choose a relatively small γ, we will be able to achieve a

good balance between accuracy and efficiency.

Merge Exclusive Features

For the second issues, we need a good way of merging the features in the

same bundle in order to reduce the corresponding training complexity. The

key is to ensure that the values of the original features can be identified

from the feature bundles. Since the histogram-based algorithm stores

discrete bins instead of continuous values of the features, we can construct a

feature bundle by letting exclusive features reside in different bins. This can

be done by adding offsets to the original values of the features.

0 10 20 30

feature A

feature B

Merge feature

Experiments

