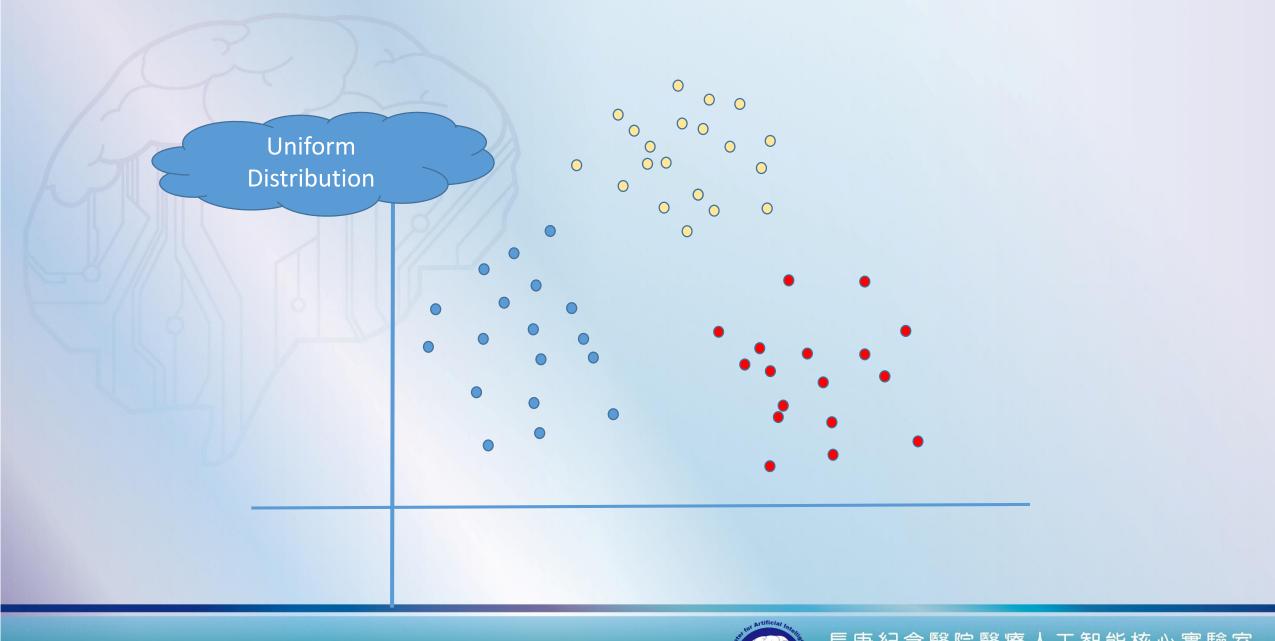


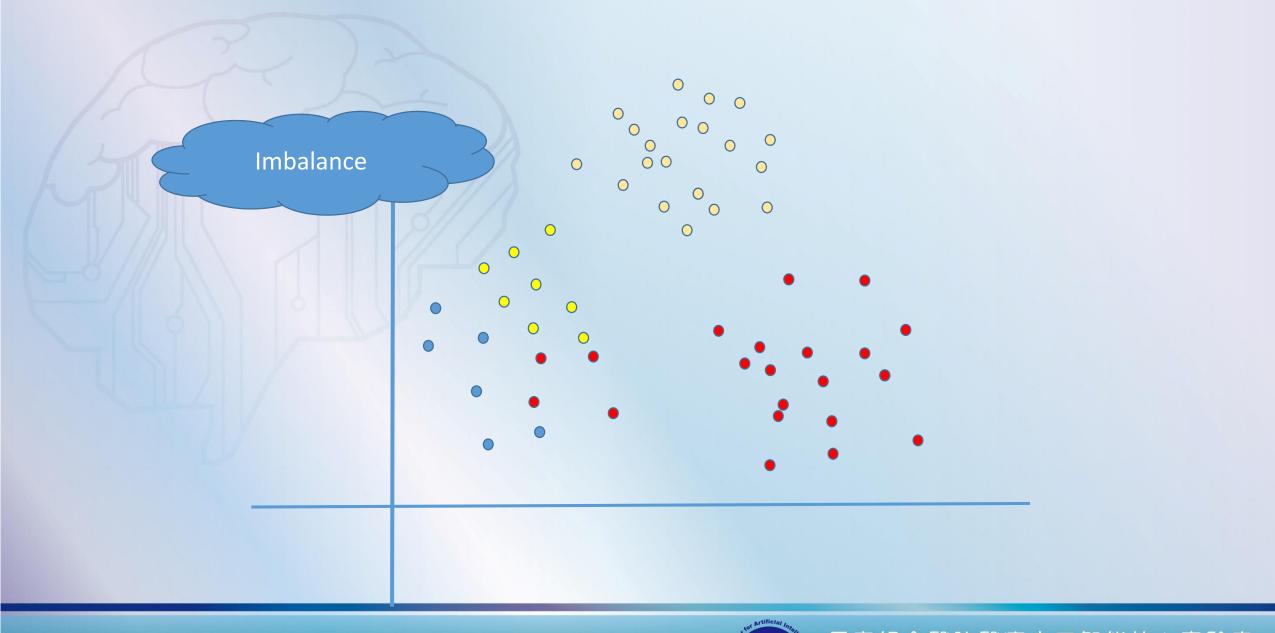
The iNaturalist Species Classification and Detection Dataset

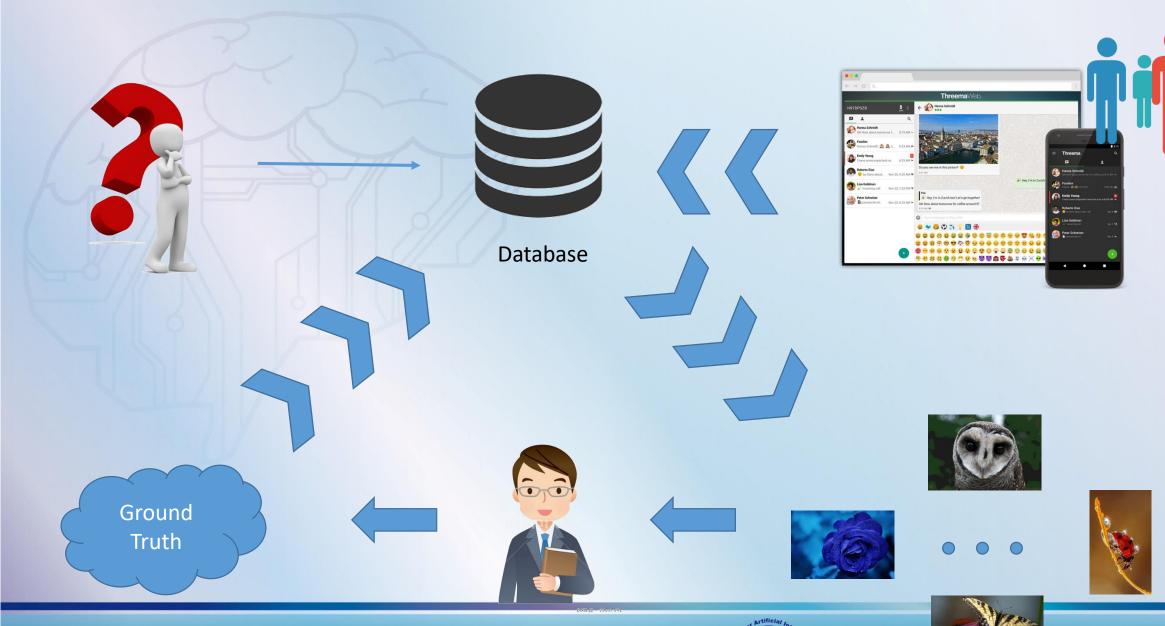
Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun Alex Shepard, Hartwig Adam, Pietro Perona₁ Serge Belongie

長庚紀念醫院醫療人工智能核心實驗室

Center for Artificial Intelligence in Medicine Chang Gung Memorial Hospital



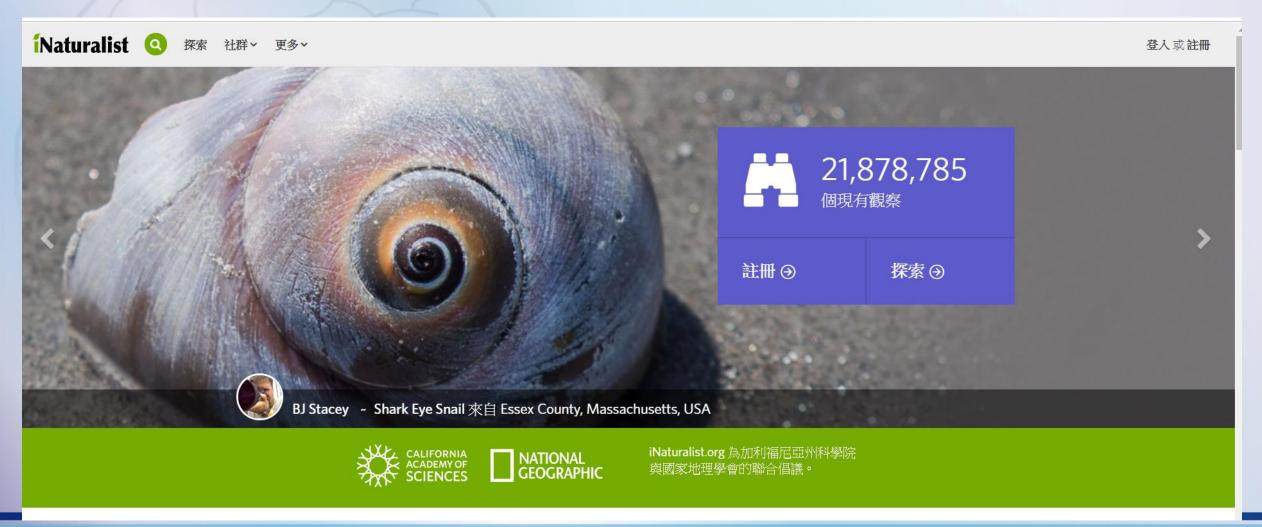




長庚紀念 Center for Artificial Intell

、工智能核心實驗室

Center for Artificial Intelligence in Medicine Chang Gung Memorial Hospital



長庚紀念醫院醫療人工智能核心實驗室 Center for Artificial Intelligence in Medicine Chang Gung Memorial Hospital

觸手可及的自然

保持追蹤

在雲端上記錄您與各種生物的相遇,以及維護生物清單。

創建有用的資料

協助科學家與資源管理者了解生物在何時及何處出現。

群眾外包鑑定

聯絡可以鑑定您所觀察到生物的專家。

成為一位公眾科學家

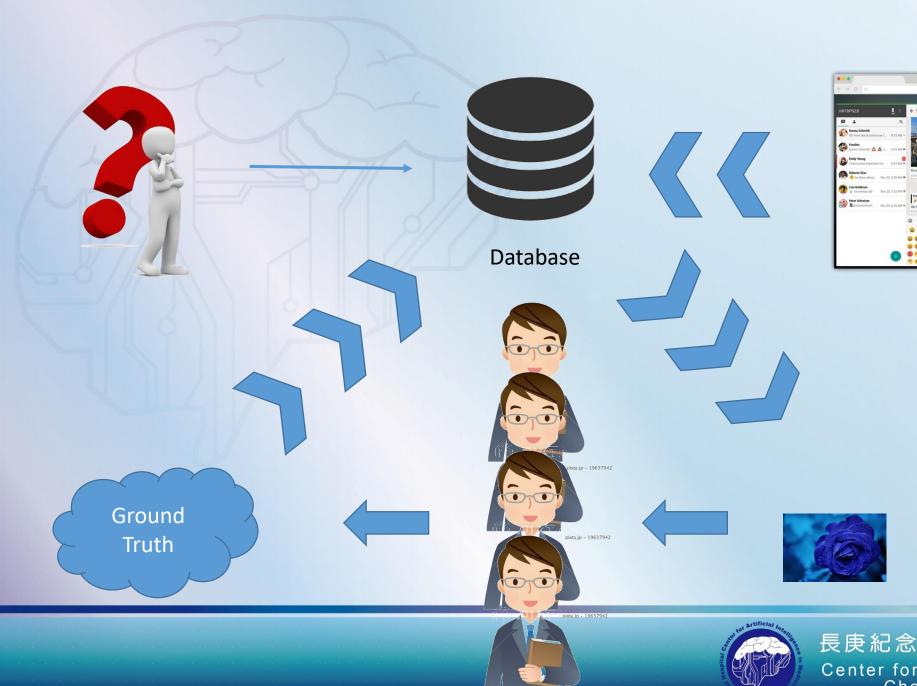
尋找一個有著您感興趣任務的專案,或是開始 您自己擁有的專案。

了解關於自然

透過與其他博物學友的交談,以及協助他人來建立您的知識。

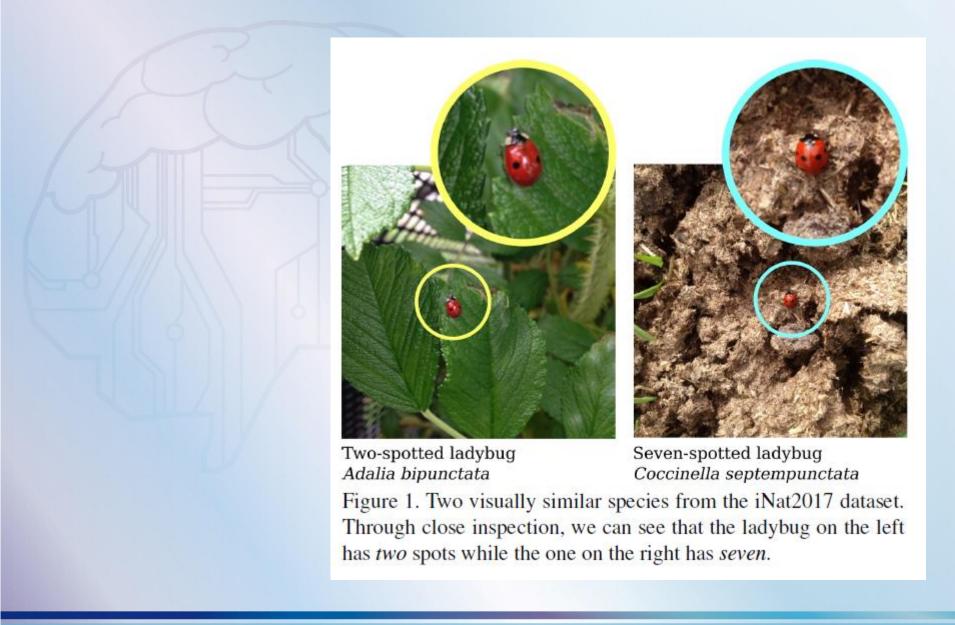
舉行生態速查 (Bioblitz)

舉行一場能讓人們盡情來找尋物種的活動。



、工智能核心實驗室

Center for Artificial Intelligence in Medicine Chang Gung Memorial Hospital



Dataset Name	# Train	# Classes	Imbalance
Flowers 102 [27]	1,020	102	1.00
Aircraft [24]	3,334	100	1.03
Oxford Pets [29]	3,680	37	1.08
DogSnap [23]	4,776	133	2.85
CUB 200-2011 [42]	5,994	200	1.03
Stanford Cars [19]	8,144	196	2.83
Stanford Dogs [16]	12,000	120	1.00
Urban Trees [43]	14,572	18	7.51
NABirds [40]	23,929	555	15.00
LeafSnap* [20]	30,866	185	8.00
CompCars* [48]	136,727	1,716	10.15
VegFru* [10]	160,731	292	8.00
Census Cars [7]	512,765	2,675	10.00
ILSVRC2012 [32]	1,281,167	1,000	1.78
iNat2017	579,184	5,089	435.44

4% error

Maximum / Minimum

Table 1. Summary of popular general and fine-grained computer vision classification datasets. 'Imbalance' represents the number of images in the largest class divided by the number of images in the smallest. While susceptible to outliers, it gives an indication of the imbalance found in many common datasets. *Total number of train, validation, and test images.

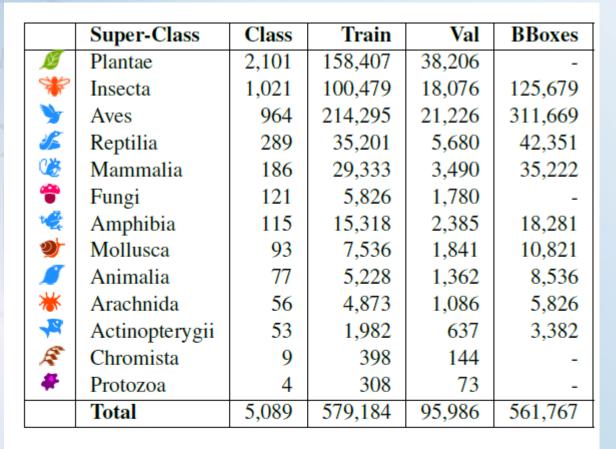


Table 2. Number of images, classes, and bounding boxes in iNat2017 broken down by super-class. 'Animalia' is a catch-all category that contains species that do not fit in the other super-classes. Bounding boxes were collected for nine of the super-classes. In addition, the public and private test sets contain 90,427 and 92,280 images, respectively.

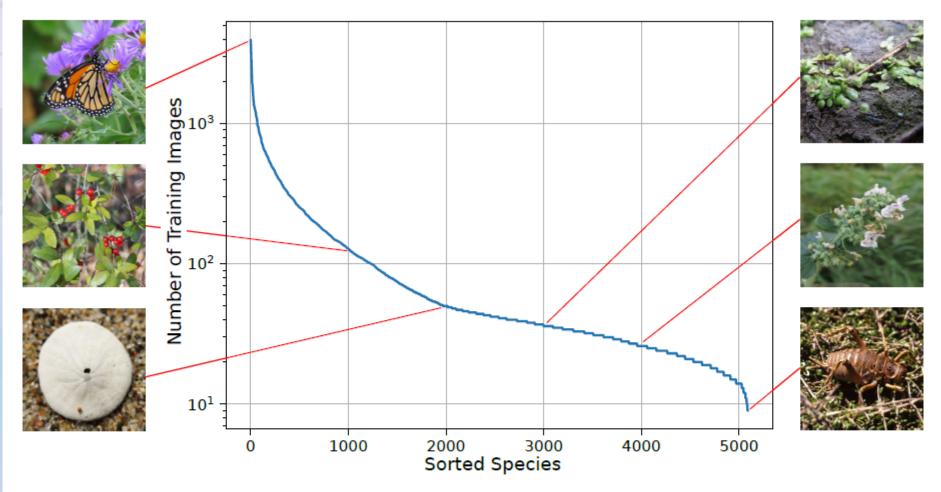


Figure 2. Distribution of training images per species. iNat2017 contains a large imbalance between classes, where the top 1% most populated classes contain over 16% of training images.

	Validation		Public Test		Private Test	
	Top1	Top5	Top1	Top5	Top1	Top5
IncResNetV2 SE	67.3	87.5	68.5	88.2	67.7	87.9
IncResNetV2	67.1	87.5	68.3	88.0	67.8	87.8
IncV3 SE	65.0	85.9	66.3	86.7	65.2	86.3
IncV3	64.2	85.2	65.5	86.1	64.8	85.7
ResNet152 drp	62.6	84.5	64.2	85.5	63.1	85.1
ResNet101 drp	60.9	83.1	62.4	84.1	61.4	83.6
ResNet152	59.0	80.5	60.6	81.7	59.7	81.3
ResNet101	58.4	80.0	59.9	81.2	59.1	80.9
MobileNet V1	52.9	75.4	54.4	76.8	53.7	76.3

Table 3. Classification results for various CNNs trained on only the training set, using a single center crop at test time. Unlike some current datasets where performance is near saturation, iNat2017 still poses a challenge for state-of-the-art classifiers.

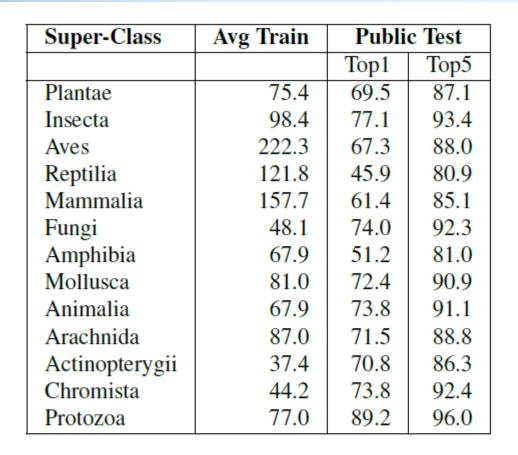


Table 4. Super-class level accuracy (computed by averaging across all species within each super-class) for the best performing model Inception ResNetV2 SE [12]. "Avg Train" indicates the average number of training images per class for each super-class. We observe a large difference in performance across the different super-classes.

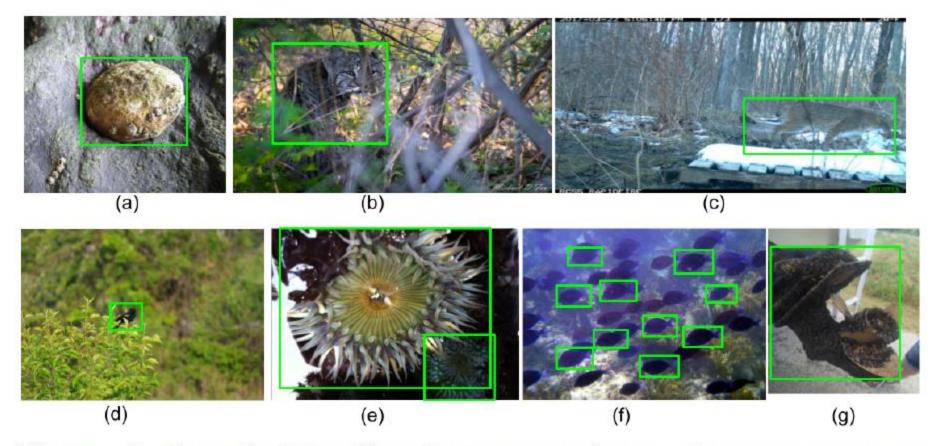


Figure 3. Sample bounding box annotations. Annotators were asked to annotate up to 10 instances of a super-class, as opposed to the fine-grained class, in each image.

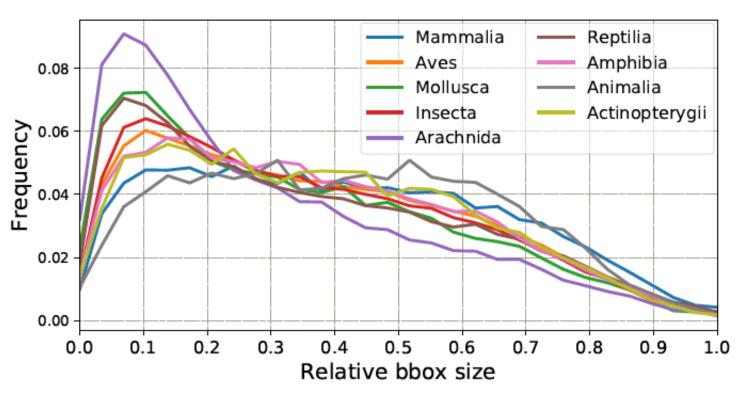


Figure 4. The distribution of relative bounding box sizes (calculated by $\sqrt{w_{bbox} \times h_{bbox}}/\sqrt{w_{img} \times h_{img}}$) in the training set, per super-class. Most objects are relatively small or medium sized.

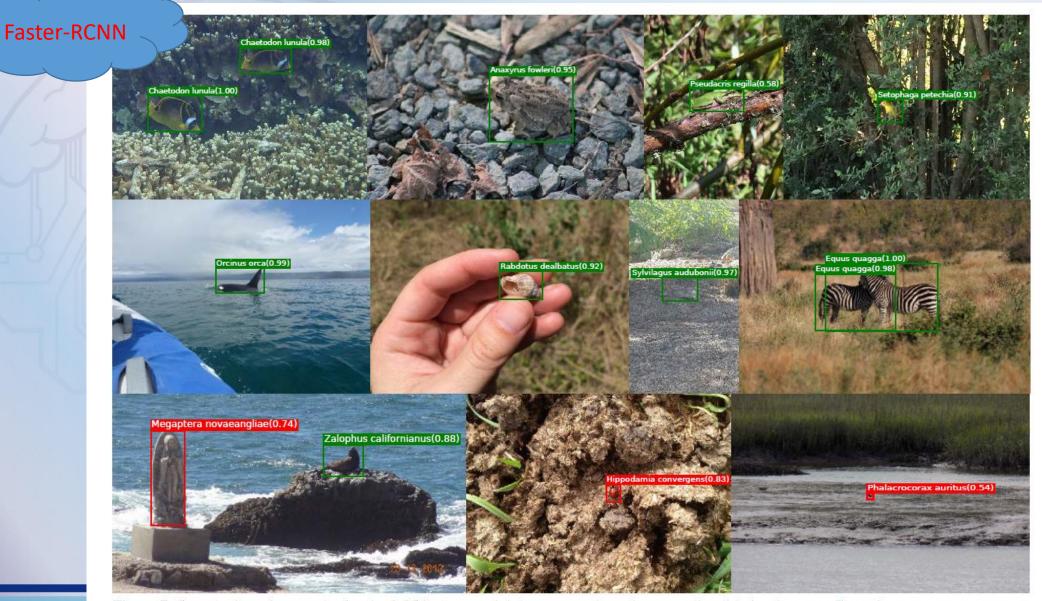


Figure 7. Sample detection results for the 2,854-class model that was evaluated across all validation images. Green boxes represent correct species level detections, while reds are mistakes. The bottom row depicts some failure cases. We see that small objects pose a challenge for classification, even when localized well.

能核心實驗室 nce in Medicine l Hospital

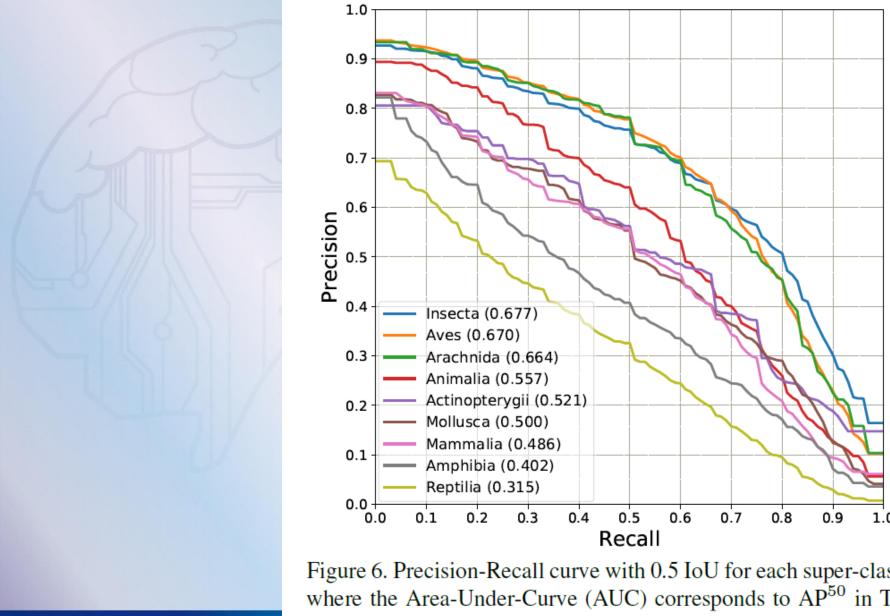
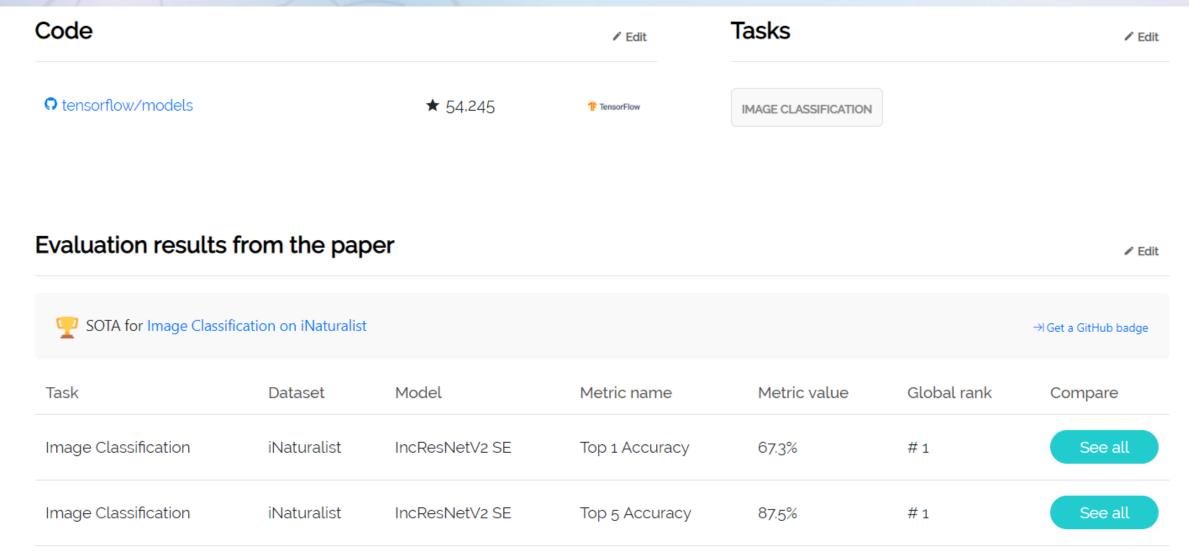


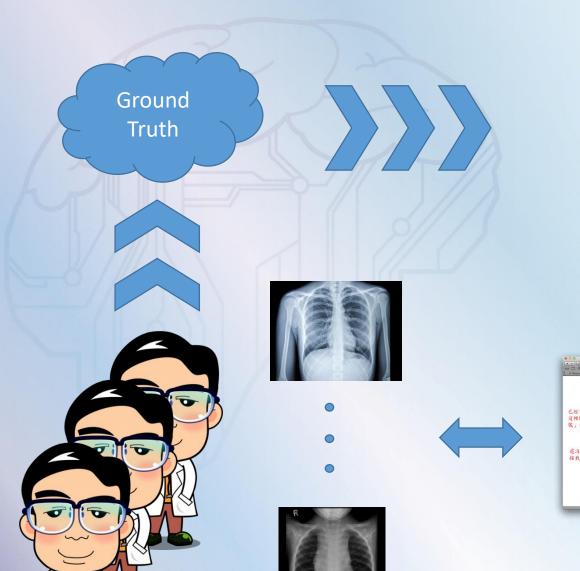
Figure 6. Precision-Recall curve with 0.5 IoU for each super-class, where the Area-Under-Curve (AUC) corresponds to AP⁵⁰ in Table 5. Super-class performance is calculated by averaging across all fine-grained classes. We can see that building a detector that works well for all super-classes in iNat2017 will be a challenge.

音院醫療人工智能核心實驗室 Artificial Intelligence in Medicine g Gung Memorial Hospital

	AP	AP^{50}	AP^{75}	AR^1	\mathbf{AR}^{10}
Insecta	49.4	67.7	59.3	64.5	64.9
Aves	49.5	67.0	59.1	63.3	63.6
Reptilia	21.3	31.5	24.9	44.0	44.8
Mammalia	33.3	48.6	39.1	49.8	50.6
Amphibia	28.7	40.2	35.0	52.0	52.3
Mollusca	34.8	50.0	41.6	52.0	53.0
Animalia	35.6	55.7	40.8	48.3	50.5
Arachnida	43.9	66.4	49.6	57.3	58.6
Actinopterygii	35.0	52.1	41.6	49.1	49.6
Overall	43.5	60.2	51.8	59.3	59.8

Table 5. Super-class-level Average Precision (AP) and Average Recall (AR) for object detection, where AP, AP⁵⁰ and AP⁷⁵ denotes AP@[IoU=.50:.05:.95], AP@[IoU=.50] and AP@[IoU=.75] respectively; AR¹ and AR¹⁰ denotes AR given 1 detection and 10 detections per image.





Database

