Controversy: Is IVF Associated with Increased Rate of Birth Defect

 R_5 謝佳琳

In Vitro Fertilization as Associated with an Increase in Major Birth Defects

Christine K. Olson, M.D.

Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Iowa

Fertil Steril 2005; 84:1308 –15

Patients

- From 1989 through 2002
- Children conceived by IVF or IUI at the University of Iowa compared with a matched cohort of naturally conceived children.

TABLE 1

Characteristics of couples in the IVF, IUI, and control groups.

Characteristic	IVF (n = 864)	IUI (n = 270)	Controls (n = 6,374)
Maternal age (y) (mean ± SD)	→ 33.9 ± 4.6ª	→ 32.4 ± 4.3 ^a	→ 33.3 ± 4.3
Paternal age (y) (mean ± SD)	\rightarrow 36.1 ± 5.6 ^a	\rightarrow 34.2 ± 4.9	\rightarrow 34.6 ± 5.5
Parity (%)			
0	57 ^a	63.4ª	20
≥1	43ª	37ª	80
Maternal race/ethnicity (%)			
Caucasian	97.1	95.2	97.0
Black	0.2	0	0.7
Hispanic	0.9	1.9	1.3
Other	1.7	2.9	1.0
Paternal race/ethnicity (%)			
Caucasian	96.8ª	94.4ª	89.3
Black	0.9	0	1.2
Hispanic	1.0	3.0	8.3
Other	1.3	2.6	1.3
Married (%)	99.2ª	99.0ª	89.7
Maternal education (y) (median) ^b	16.0ª	16.0ª	14.0
Paternal education (y) (median) ^b	15.0ª	16.0ª	14.0
Maternal smoking (%)	1.9ª	4.7ª	13.3
Maternal alcohol use (%)	0.4ª	0.7ª	2.0

Note: All P values are for comparison with control group and are noted only if significant. $^{\alpha}P$ <.005.

^b Education variable: values 13-16 = college (1-4 y).

TABLE 2

Characteristics of infants in the IVF, IUI, and control populations.

	IVF		IUI		Control
Characteristic	(n = 1,462)	P	(n = 343)	P	(n = 8,422)
Mean gestational age (wk) (mean ± SD)					
All	36.5 ± 3.6	<.001	37.5 ± 3.9	.031	37.5 ± 3.0
Singletons	38.7 ± 2.2		38.7 ± 2.3		39.1 ± 1.9
Very low birth weight (<1,500 g)					
All	115 (7.9)	<.001	25 (7.3)	<.001	329 (3.9)
Singletons	12 (1.9)		7 (2.7)		37 (0.8)
Twins	62 (9.2)		9 (14.1)		210 (6.0)
Triplets/quadruplets	41 (28.3)		9 (60.0)		82 (25.6)
Low birth weight (<2,500 g)					
All	500 (34.2)	.002	72 (21.0)	<.001	2,011 (23.9)
Singletons	44 (6.8)		23 (8.7)		195 (4.3)
Twins	326 (48.5)		34 (53.1)		1,520 (43.3)
Triplets/quadruplets	130 (89.7)		15 (100)		296 (92.5)
Preterm delivery (<32 wk)					
All	129 (8.8)	<.001	23 (6.7)	.003	343 (4.1)
Singletons	10 (1.6)		6 (2.3)		36 (0.8)
Twins	70 (10.4)		8 (12.5)		237 (6.8)
Triplets/quadruplets	49 (33.8)		9 (60.0)		70 (21.9)
Multiple births					
Twins	672 (46.0)		64 (18.7)		3,512 (41.7)
Triplets/quadruplets	145 (9.9)		15 (4.4)		320 (3.79)
Male sex					
All	735 (50.3)		179 (52.2)		4,190 (49.8)
Singletons	330 (51.2)		132 (50.0)		2,309 (50.3)
Cesarean delivery					
All	706 (48.3)	<.001	114 (33.2)		3,152 (37.4)
Singletons	198 (30.8)		79 (29.9)		1,086 (23.7)

Note: Data are presented as n (%), unless otherwise noted. Data in this table are for descriptive purposes; no adjustments were made for confounding variables in the analysis. Statistical analyses were performed only for the "all infants" groups and not based on plurality. P values are for comparison with control group and are not significant if not shown.

TABLE 3

Prevalence of major birth defects diagnosed by 1 year of age.

Group	No. of infants	Prevalence (%)	Unadjusted OR (95% CI)	P	OR adjusted for plurality and/or parity	P
All infants						
Control	8,422	369 (4.4)	Reference		Reference	
IVF	1,462	90 (6.2)	1.44 (1.12-1.85)	.004	1.30 (1.00-1.67) ^a	.048ª
IUI	343	17 (5.0)	1.14 (0.70-1.87)	.593	1.11 (0.67-1.84) ^a	.679ª
All singletons						
Control	4,590	171 (3.7)	Reference		Reference	
IVF	645	38 (5.9)	1.62 (1.12-2.34)	.010	1.44 (0.98–2.12) ^b	.061
IUI	264	13 (4.9)	1.33 (0.75-2.37)	.324	1,19 (0,66–2,13) ^b	.568
All term singletons (≥37 wk)						
Control	4,285	148 (3.5)	Reference		Reference	
IVF	581	34 (5.8)	1.74 (1.18-2.56)	.006	1.57 (1.04–2.36) ^b	.031
IUI	231	12 (5.2)	1.53 (0.84-1.79)	.164	1.38 (0.75–2.57) ^b	.298

Note: Logistic regression with the GEE method accounting for correlation between infants from same mother.

Adjusted for plurality and parity.

b Adjusted for parity.

- Different treatments within the IVF category
 - No significant differences in birth defect rates
 - ZIFT VS ET
 - ICSI- VS non ICSI-
 - Cryopreserved embryos VS fresh ones (singletons)
 - A *higher incidence* in *twins* born after transfer of cryopreserved embryos as compared with twins conceived after the transfer of "fresh" embryos (OR 2.11, 95% CI 1.03–4.33, P = .041)

All infants

- Multiple gestations were associated with a higher birth defect rate than singletons
- Triplets and other higher-order multiple gestations were associated with increased birth defects

Control

 A statistically significant increase in defect rate was seen when twins were compared with singletons

• IVF or IUI treatment

no difference in birth defects was seen in twins compared with singletons

TABLE 4

Major birth defects by affected organ system.

		All infa (n = 10			Singletons (n = 5,499)							
System	Control (n = 8,422)	IVF (n = 1,462)	P	IUI (n = 343)	P	Control (n = 4,590)	IVF (n = 645)	P	IUI (n = 264)	P		
CNS	50 (0.6)	9 (0.6)		1 (0.3)		15 (0.3)	2 (0.3)		1 (0.4)			
Cardiovascular	100 (1.2)	33 (2.3)	.002	5 (1.5)		45 (1.0)	16 (2.5)	.003	4 (1.5)			
Ear	29 (0.3)	8 (0.6)		2 (0.6)		12 (0.3)	4 (0.6)		2 (0.8)			
Eye	42 (0.5)	8 (0.6)		2 (0.6)		19 (0.4)	5 (0.8)		0 (0)			
Gastrointestinal	48 (0.6)	8 (0.6)		3 (0.9)		15 (0.3)	4 (0.6)		2 (0.8)			
Genitourinary	86 (1.0)	12 (0.8)		2 (0.6)		39 (0.9)	5 (0.8)		0 (0)			
Musculoskeletal	103 (1.2)	32 (2.2)	.007	9 (2.6)	.042	55 (1.2)	17 (2.6)	.006	7 (2.7)	0.08		
Orofacial	43 (0.5)	10 (0.7)		4 (1.2)		27 (0.6)	6 (0.9)		3 (1.1)			
Respiratory	6 (0.1)	3 (0.2)		0 (0)		1 (0.02)	0 (0)		0 (0)			
Skin	19 (0.2)	4 (0.3)		0 (0)		12 (0.3)	4 (0.6)		0 (0)			
Syndrome	30 (0.4)	12 (0.8)	.026	1 (0.3)		17 (0.4)	7 (1.1)	.022	0 (0)			
Tumors	10 (0.1)	3 (0.2)		0 (0)		4 (0.1)	1 (0.2)		0 (0)			
Chromosomal	20 (0.2)	6 (0.4)		0 (0)		13 (0.3)	3 (0.5)		0 (0)			
Other	8 (0.1)	2 (0.1)		0 (0)		0 (0)	1 (0.2)		0 (0)			

Note: Data are presented as n (%). If a child had multiple defects in separate organ systems, the child appears more than once in the table. If a child had more than one unrelated defect affecting the same organ system, the child appears only once in the table. P values are comparisons with the control group. P values were not significant if not listed. Fisher's exact t-test was used. CNS = central nervous system.

Analyzing the major birth defects of different gender

- IVF

• Male infants had an 8.03% rate of major birth defects, compared with a 4.26% rate in female infants (OR 1.96, 95% CI 1.23–3.12, *P*.004).

IUI or control

 No increase in birth defects among male infants was noted

- The birth defect rate was increased after IVF when the analysis was limited to term singletons.
- Among IVF-conceived children, there was no difference in birth defect rates after intracytoplasmic sperm injection (ICSI) or after transfer of cryopreserved embryos.
- Cardiovascular and musculoskeletal defects and known birth defect syndromes were increased after IVF.

- The cause of an increased rate of birth defects in children born after IVF is unknown
- Among IVF-conceived children, there was no difference in birth defect rates after intracytoplasmic sperm injection (ICSI) or after transfer of cryopreserved embryos.

Recent attention

1. Errors in *genomic imprinting*

- Imprinting defects and impaired gametogenesis lined in men or induced with ovulation - inducing medications in women
 - reduced sperm concentrations and abnormal genomic imprinting in the spermatozoa (*Margues CJ. Lancet 2002;363:1700 –2*).
- side effect of the infertility treatment
 - embryo culture media might predispose to imprinting defects in the embryo (*Edwards RG. Reprod Biomed Online 2003;7:131– 8. Niemitz EL. Am J Hum Genet 2004;74:599–609*).
- 2. A genetic inherent in one or both of the partners, leading to both reduced fertility and subsequent birth defects

Children born after assisted fertilization have an increased rate of major congenital anomalies

Reija Klemetti, M.H.Sc., Finland

Fertil Steril 2005;84:1300 -7

• Patients

- 1996 to 1998 in Finland
- Children from IVF (n =4,559), other ART (n=4,467), and controls (n = 27,078, a random sample of naturally conceived children).

• Main Outcome Measures

- Rate of major CAs.
- Children from IVF and other ART were compared with control children, both overall and by plurality, controlling for confounding factors by logistic regression.

Characteristics of IVF, other ART, and control mothers and children by multiplicity and gender.

· ·	,	,	, g
	IVF	Other ART	Controls
Mothers	n = 3,737	n = 4,188	n = 27,022
Age (y) (mean ± SD) ^a	33.9 ± 4.5	31.2 ± 4.6	29.8 ± 5.3
Age (y) ^b			
<25	2.2	8.3	19.7
25–29	17.3	34.1	32.2
30–34	40.6	37.2	31.4
35–39	30.1	16.4	13.5
40+	9.8	4.0	3.1
Married ^c	76.1	74.8	60.5
Parity ^b			
0	71.7	54.3	38.7
1	21.1	32.4	33.4
2	4.2	9.3	16.4
3+	2.4	3.3	10.1
Missing	0.6	0.7	1.4
Socioeconomic position ^b			
Upper white-collar	26.1	21.2	15.7
Lower white-collar	48.8	47.8	41.3
Blue-collar	12.8	13.9	16.6
Other	12.3	17.2	26.4
Place of residence ^b			
Southern Finland	44.8	38.6	40.6
Western Finland	33.4	38.3	34.4
Eastern Finland	9.9	9.5	10.4
Northern Finland	11.6	13.3	13.9
Missing	0.3	0.3	0.7
Children	n = 4,459	n = 4,467	n = 27,078
Singletons	64.3	87.9	97.8
Girls	32.7	42.8	48.6
Boys	31.6	45.1	49.3
Multiples	35.7	12.1	2.2
Girls	17.6	6.0	1.2
Boys	18.1	6.0	1.0

Note: Values are percentages, unless otherwise noted.

TABLE 1

Klemetti. Assisted reproduction and congenital anomaly. Fertil Steril 2005.

a P<.001, t-test.

 $^{^{\}rm b}$ P<.001 for all comparisons (IVF vs. other ART, IVF vs. controls, and other ART vs. controls), χ^2 test.

[°] P<.001 (IVF vs. controls and other ART vs. controls), test for relative proportions.

TABLE 2

Prevalence of major congenital anomalies per 10,000 infant by the organ system affected.^a

	Singletons							Multiples								
	IVF (n = 2,930)		Other ART (n = 3,926)		Controls (n = 26,489)		IVF (n = 1,629)			Other ART (n = 541)			Controls (n = 589)			
	n	/10,000	₽ ^b	n	/10,000	₽b	n	/10,000	n	/10,000	₽ ^b	n	/10,000	P ^b	n	/10,000
Any	125	427	<.001	138	352	.022	756	285	70	430	.335	27	499	.836	31	526
Central nervous system	9	31	.008	12	31	.003	31	12	9	55	.071	7	129	.006	0	0
Eye, ear, face and neck	12	41	.009	6	15	.693	48	18	5	31	.583	1	18	.952	1	17
Heart	44	150	.042	59	150	.021	287	108	33	203	.791	11	203	.840	13	221
Other circulatory system	6	20	.740	12	31	.088	47	18	2	12	.790	0	0	.338	1	17
Respiratory system	5	17	.284	5	13	.647	27	10	3	18	.496	0	0	.175	2	34
Cleft palate and cleft lip	12	41	.034	14	36	.076	56	21	5	31	.904	0	0	.175	2	34
Digestive system	14	48	.028	16	41	.083	67	25	5	31	.093	4	74	.836	5	85
Urogenital system	35	119	<.001	26	66	.150	129	49	12	74	.789	4	74	.836	5	85
Musculoskeletal system	34	116	.004	30	76	.588	182	69	20	123	.270	6	111	.441	4	68
Skin, hair and nails	1	3	.533	2	5	.757	17	6	2	12	.395	0	0	NA	0	0
Chromosomal anomalies	8	27	.304	7	18	.927	49	18	3	18	.496	2	37	.932	2	34
Other congenital anomalies																
and the defects	12	41	.171	19	48	.020	71	27	9	55	.237	3	55	.381	6	102

Note: NA = not applicable.

Klemetti. Assisted reproduction and congenital anomaly. Fertil Steril 2005.

a n = number of children. If a child had a major malformation in more than one organ system, the child appears several times in the table. If the malformations affect the same organ system, the child appears only once in the table.

^b Test for relative proportions, control group as a reference group.

TABLE 3

Total risk of major congenital anomalies and risk according to organ system affected* by gender and multiplicity.

		Risk									
		Girls				Boys	ı	Total			
Multiplicity	Group	nb	OR (95% CI)	OR° (95% CI)	nb	OR (95% CI)	OR° (95% CI)	пb	OR (95% CI)	OR° (95% CI)	
Singletons											
Total	Control	348	1.00	1.00	408	1.00	1.00	756	1.00	1.00	
	ME	48	1.23 (0.90-1.66)	0.97 (0.69-1.36)	77	1.79 (1.40-2.30)	1.63 (1.23-2.15)	125	1.52 (1.25-1.84)	1.30 (1.05–1.61)	
	Other ART ^d	67	1.34 (1.02–1.74)	1.21 (0.98–1.67)	71	1.16 (0.90–1.50)	1.12 (0.86-1.46)	138	1.24 (1.03–1.49)	1.17 (0.97–1.41)	
Heart	Control	128	1.00	1.00	136	1.00	1.00	264	1.00	1.00	
	ME	17	1.17 (0.71-1.95)	1.05 (0.62-1.78)	19	1.30 (0.80-2.11)	1.21 (0.73-2.00)	36	1.24 (0.87-1.75)	1.13 (0.79–1.62)	
	Other ART	29	1.57 (1.04–2.35)	1.52 (1.01–2.28)	24	1. 17 (0.76–1.81)	1.17 (0.75–1.81)	5.3	1.36 (1.01–1.83)	1.33 (0.99–1.80)	
Urogenital	Control	52	1.00	1.00	80	1.00	1.00	26	1.00	1.00	
	MF	9	1.53 (0.75-3.11)	1.47 (0.70-3.07)	22	2.57 (1.60-4.14)	2.46 (1.49-4.07)	31	2.14 (1.44-3.17)	2.05 (1.36-3.10)	
	Other ART	4	0.53 (0.19-1.46)	0.52 (0.19-1.45)	20	1.66 (1.02-2.72)	1.62 (0.99-2.65)	24	1.23 (0.79-1.90)	1.20 (0.78–1.87)	
Musculosceletal	Control	72	1.00	1.00	110	1.00	1.00	182	1.00	1.00	
	ME		1.35 (0.72-2.55)			1.95 (1.24-3.07)					
	Other ART	12	1.15 (0.62-2.12)	1.11 (0.60–2.05)	18	1.09 (0.66–1.79)	1.04 (0.63-1.72)	30	1.11 (0.76–1.64)	1.07 (0.73–1.58)	
Multiples											
Total	Control	18	1.00	1.00	13	1.00	1.00	31	1.00	1.00	
	ME	26	0.55 (0.30-1.02)	0.45 (0.22-0.93)	44	1.13 (0.60-2.14)	1.31 (0.84-2.71)	7.0	0.81 (0.52-1.25)	0.80 (0.48-1.32)	
	Other ART	7	0.44 (0.18–1.08)	0.41 (0.16–1.05)	20	1.59 (0.77-3.26)	1.56 (0.71-3.42)	27	0.95 (0.56-1.61)	0.91 (0.52-1.61)	
Total	Control	366	1.00	1.00	421	1.00	1.00	787	1.00	1.00	
	ME					1.77 (1.44-2.17)					
	Other ART	75	1.26 (0.98–1.62)	1.15 (0.89–1.50)	91	1.30 (1.03–1.64)	1.26 (0.99–1.59)	166	1.28 (1.08–1.52)	1.21 (1.02–1.44)	

^{*} Reference group (OR = 1) = control children. If a child had a major CA in more than one organ system, the child appears several times in the table. If the CAs affect the same organ system, the child appears only once in the table.

Klemetti. Assisted reproduction and congenital anomaly. Fertil Steril 2005.

The risk was only increased for boys, and the risk was decreased for multiple IVF girls

^b n = number of malformed children.

^c For all major CAs adjusted by age, parity, socioeconomic position, and region, and for some specific anomalies according to organ system adjusted only by age owing to the small number of cases.

^d One other ART child excluded owing to missing gender status.

TABLE 4

Major genital anomalies (and all hypospadias) among singleton boys: number and rate per 10,000.

	IVF (n = 1,440)	Other ART (n = 2,014)	Controls (n = 13,339)
Total			
No.	11	6	15
Rate	76	30	11
P ^a	<.001	.036	
Hypospadias			
No.	7	3	10
Rate	15	7	4
P ^a	<.001	.287	
All hypospadias ^b			
No.	11	8	38
Rate	76	40	29
P ^a	.003	.390	

^a Test for relative proportions, compared with controls. ^b Also includes glandular hypospadias.

Klemetti. Assisted reproduction and congenital anomaly. Fertil Steril 2005.

TABLE 5

Drugs used by mothers of malformed and nonmalformed children.

Group	Malformed ^a	Non- malformed	₽ ^b
IVF ^c	n = 179	n = 4,088	
P	87	88	.736
FSH or hMG	59	63	.241
GnRH	55	62	.050
_hCG	17	20	.286
E ₂	20	12	.003
Other ART	n = 166	n = 4,301	
Clomiphene			
citrate	81	86	.056
P	30	30	.896
FSH or hMG	14	11	.250
hCG	5	4	.598

Note: Values are percentages.

Klemetti. Assisted reproduction and congenital anomaly. Fertil Steril 2005.

At least one major congenital anomaly.

Comparisons of malformed and nonmalformed groups, test for relative proportions.

Two hundred ninety-two IVF children are excluded owing to the lack of information on drugs used.

Conclusion

- IVF was associated with an <u>increased risk</u> for major
 CAs among <u>singleton boys</u> and a <u>decreased risk</u> among <u>multiple girls</u>
- The risk after other ART was only slightly increased.

Congenital abnormalities in children born after assisted reproductive techniques: How much is associated with the presence of infertility and how much with its treatment?

William M. Buckett, M.D.

Department of Obstetrics and Gynecology, McGill University, Montréal, Québec, Canada

Fertil Steril 2005;84:1318 –9.

- Couples with infertility might have higher rates of congenital abnormality, whether they conceive after ART or spontaneously.
 - Couples with infertility who conceive spontaneously have poorer perinatal outcomes than the general population (Draper ES, Lancet 1999;353:1746 –9.).
 - Chromosomal abnormalities are more frequent in men with severe male factor infertility who are referred for IVF/ICSI
 - Unexplained female subfertility also confers a higher risk of chromosomal abnormality

- Increased risk of congenital abnormality when compared with the general population
 - The treatment of ART with ICSI
 - Infertility itself

Future

- Research to answer these questions
- Well counseling

Do children born after assisted reproductive technology have a higher incidence of birth defects?

Francois Olivennes, M.D.

Center for Reproductive Medicin, Hopital cochin, Paris, France

Fertil Steril 2005;84:1325-6

- Klemetti et al. (*Fertil Steril 2005;84:1300 –7*)
 - For IVF children
 - The odds ratio (OR) of CA 1.3 (95% confidence interval [CI] 1.1–1.6).
 - increased risk among singleton boys
 - For other ART children
 - The OR of major congenital anomalies 1.3 (95% CI 1.1–1.5)
 - Not explained by the maternal characteristics

- Hansen M (*Hum Reprod 2005;20:328 –38*)
 - The pooled OR: 1.40 (95% CI 1.28 –1.53) ~ 1.29 (95% CI 1.21–1.37).
 - The results were significant for major birth defects and for singleton births only.
 - $-a \ge 25\%$ increased risk of birth defects in ART children

- Those studies therefore suggest that ART children could have a 25%-40% higher incidence of birth defects.
 - The ART technique
 - technique itself (e.g., ICSI)
 - freezing/thawing
 - the culture media
 - the medications used in the ovarian stimulation or luteal phase support
 - The underlying causes of infertility

How to counseling

- First, the overall rate of major malformations in the control population is low (1%–3%.)
 - A 30% increase puts this rate at 1.3% 3.9%
 - More than 95% of children are not carrying a malformation.
- Second, the classification of the malformation between major and minor
 - The type of malformation will of course play a major part in the information provided to patients.

Thanks for your attention!!